123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- __dir__ = os.path.dirname(__file__)
- sys.path.append(__dir__)
- sys.path.append(os.path.join(__dir__, '..', '..', '..'))
- sys.path.append(os.path.join(__dir__, '..', '..', '..', 'tools'))
- import paddle
- from ppocr.data import build_dataloader
- from ppocr.modeling.architectures import build_model
- from ppocr.postprocess import build_post_process
- from ppocr.metrics import build_metric
- from ppocr.utils.save_load import load_model
- import tools.program as program
- def main(config, device, logger, vdl_writer):
- global_config = config['Global']
- # build dataloader
- valid_dataloader = build_dataloader(config, 'Eval', device, logger)
- # build post process
- post_process_class = build_post_process(config['PostProcess'],
- global_config)
- # build model
- # for rec algorithm
- if hasattr(post_process_class, 'character'):
- char_num = len(getattr(post_process_class, 'character'))
- config['Architecture']["Head"]['out_channels'] = char_num
- model = build_model(config['Architecture'])
- if config['Architecture']['model_type'] == 'det':
- input_shape = [1, 3, 640, 640]
- elif config['Architecture']['model_type'] == 'rec':
- input_shape = [1, 3, 32, 320]
- flops = paddle.flops(model, input_shape)
- logger.info("FLOPs before pruning: {}".format(flops))
- from paddleslim.dygraph import FPGMFilterPruner
- model.train()
- pruner = FPGMFilterPruner(model, input_shape)
- # build metric
- eval_class = build_metric(config['Metric'])
- def eval_fn():
- metric = program.eval(model, valid_dataloader, post_process_class,
- eval_class)
- if config['Architecture']['model_type'] == 'det':
- main_indicator = 'hmean'
- else:
- main_indicator = 'acc'
- logger.info("metric[{}]: {}".format(main_indicator, metric[
- main_indicator]))
- return metric[main_indicator]
- params_sensitive = pruner.sensitive(
- eval_func=eval_fn,
- sen_file="./sen.pickle",
- skip_vars=[
- "conv2d_57.w_0", "conv2d_transpose_2.w_0", "conv2d_transpose_3.w_0"
- ])
- logger.info(
- "The sensitivity analysis results of model parameters saved in sen.pickle"
- )
- # calculate pruned params's ratio
- params_sensitive = pruner._get_ratios_by_loss(params_sensitive, loss=0.02)
- for key in params_sensitive.keys():
- logger.info("{}, {}".format(key, params_sensitive[key]))
- plan = pruner.prune_vars(params_sensitive, [0])
- flops = paddle.flops(model, input_shape)
- logger.info("FLOPs after pruning: {}".format(flops))
- # load pretrain model
- load_model(config, model)
- metric = program.eval(model, valid_dataloader, post_process_class,
- eval_class)
- if config['Architecture']['model_type'] == 'det':
- main_indicator = 'hmean'
- else:
- main_indicator = 'acc'
- logger.info("metric['']: {}".format(main_indicator, metric[main_indicator]))
- # start export model
- from paddle.jit import to_static
- infer_shape = [3, -1, -1]
- if config['Architecture']['model_type'] == "rec":
- infer_shape = [3, 32, -1] # for rec model, H must be 32
- if 'Transform' in config['Architecture'] and config['Architecture'][
- 'Transform'] is not None and config['Architecture'][
- 'Transform']['name'] == 'TPS':
- logger.info(
- 'When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training'
- )
- infer_shape[-1] = 100
- model = to_static(
- model,
- input_spec=[
- paddle.static.InputSpec(
- shape=[None] + infer_shape, dtype='float32')
- ])
- save_path = '{}/inference'.format(config['Global']['save_inference_dir'])
- paddle.jit.save(model, save_path)
- logger.info('inference model is saved to {}'.format(save_path))
- if __name__ == '__main__':
- config, device, logger, vdl_writer = program.preprocess(is_train=True)
- main(config, device, logger, vdl_writer)
|