123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from paddle_serving_client import Client
- import cv2
- import sys
- import numpy as np
- import os
- from paddle_serving_client import Client
- from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
- from paddle_serving_app.reader import Div, Normalize, Transpose
- from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
- from ocr_reader import OCRReader
- try:
- from paddle_serving_server_gpu.web_service import WebService
- except ImportError:
- from paddle_serving_server.web_service import WebService
- from paddle_serving_app.local_predict import LocalPredictor
- import time
- import re
- import base64
- class OCRService(WebService):
- def init_det_debugger(self, det_model_config):
- self.det_preprocess = Sequential([
- ResizeByFactor(32, 960), Div(255),
- Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
- (2, 0, 1))
- ])
- self.det_client = LocalPredictor()
- if sys.argv[1] == 'gpu':
- self.det_client.load_model_config(
- det_model_config, use_gpu=True, gpu_id=0)
- elif sys.argv[1] == 'cpu':
- self.det_client.load_model_config(det_model_config)
- self.ocr_reader = OCRReader(
- char_dict_path="../../../ppocr/utils/ppocr_keys_v1.txt")
- def preprocess(self, feed=[], fetch=[]):
- data = base64.b64decode(feed[0]["image"].encode('utf8'))
- data = np.fromstring(data, np.uint8)
- im = cv2.imdecode(data, cv2.IMREAD_COLOR)
- ori_h, ori_w, _ = im.shape
- det_img = self.det_preprocess(im)
- _, new_h, new_w = det_img.shape
- det_img = det_img[np.newaxis, :]
- det_img = det_img.copy()
- det_out = self.det_client.predict(
- feed={"x": det_img}, fetch=["save_infer_model/scale_0.tmp_1"], batch=True)
- filter_func = FilterBoxes(10, 10)
- post_func = DBPostProcess({
- "thresh": 0.3,
- "box_thresh": 0.5,
- "max_candidates": 1000,
- "unclip_ratio": 1.5,
- "min_size": 3
- })
- sorted_boxes = SortedBoxes()
- ratio_list = [float(new_h) / ori_h, float(new_w) / ori_w]
- dt_boxes_list = post_func(det_out["save_infer_model/scale_0.tmp_1"], [ratio_list])
- dt_boxes = filter_func(dt_boxes_list[0], [ori_h, ori_w])
- dt_boxes = sorted_boxes(dt_boxes)
- get_rotate_crop_image = GetRotateCropImage()
- img_list = []
- max_wh_ratio = 0
- for i, dtbox in enumerate(dt_boxes):
- boximg = get_rotate_crop_image(im, dt_boxes[i])
- img_list.append(boximg)
- h, w = boximg.shape[0:2]
- wh_ratio = w * 1.0 / h
- max_wh_ratio = max(max_wh_ratio, wh_ratio)
- if len(img_list) == 0:
- return [], []
- _, w, h = self.ocr_reader.resize_norm_img(img_list[0],
- max_wh_ratio).shape
- imgs = np.zeros((len(img_list), 3, w, h)).astype('float32')
- for id, img in enumerate(img_list):
- norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
- imgs[id] = norm_img
- feed = {"x": imgs.copy()}
- fetch = ["save_infer_model/scale_0.tmp_1"]
- return feed, fetch, True
- def postprocess(self, feed={}, fetch=[], fetch_map=None):
- rec_res = self.ocr_reader.postprocess(fetch_map, with_score=True)
- res_lst = []
- for res in rec_res:
- res_lst.append(res[0])
- res = {"res": res_lst}
- return res
- ocr_service = OCRService(name="ocr")
- ocr_service.load_model_config("../ppocr_rec_mobile_2.0_serving")
- ocr_service.prepare_server(workdir="workdir", port=9292)
- ocr_service.init_det_debugger(det_model_config="../ppocr_det_mobile_2.0_serving")
- if sys.argv[1] == 'gpu':
- ocr_service.set_gpus("0")
- ocr_service.run_debugger_service(gpu=True)
- elif sys.argv[1] == 'cpu':
- ocr_service.run_debugger_service()
- ocr_service.run_web_service()
|