123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import cv2
- import copy
- import numpy as np
- import math
- import re
- import sys
- import argparse
- import string
- from copy import deepcopy
- class DetResizeForTest(object):
- def __init__(self, **kwargs):
- super(DetResizeForTest, self).__init__()
- self.resize_type = 0
- if 'image_shape' in kwargs:
- self.image_shape = kwargs['image_shape']
- self.resize_type = 1
- elif 'limit_side_len' in kwargs:
- self.limit_side_len = kwargs['limit_side_len']
- self.limit_type = kwargs.get('limit_type', 'min')
- elif 'resize_short' in kwargs:
- self.limit_side_len = 736
- self.limit_type = 'min'
- else:
- self.resize_type = 2
- self.resize_long = kwargs.get('resize_long', 960)
- def __call__(self, data):
- img = deepcopy(data)
- src_h, src_w, _ = img.shape
- if self.resize_type == 0:
- img, [ratio_h, ratio_w] = self.resize_image_type0(img)
- elif self.resize_type == 2:
- img, [ratio_h, ratio_w] = self.resize_image_type2(img)
- else:
- img, [ratio_h, ratio_w] = self.resize_image_type1(img)
- return img
- def resize_image_type1(self, img):
- resize_h, resize_w = self.image_shape
- ori_h, ori_w = img.shape[:2] # (h, w, c)
- ratio_h = float(resize_h) / ori_h
- ratio_w = float(resize_w) / ori_w
- img = cv2.resize(img, (int(resize_w), int(resize_h)))
- return img, [ratio_h, ratio_w]
- def resize_image_type0(self, img):
- """
- resize image to a size multiple of 32 which is required by the network
- args:
- img(array): array with shape [h, w, c]
- return(tuple):
- img, (ratio_h, ratio_w)
- """
- limit_side_len = self.limit_side_len
- h, w, _ = img.shape
- # limit the max side
- if self.limit_type == 'max':
- if max(h, w) > limit_side_len:
- if h > w:
- ratio = float(limit_side_len) / h
- else:
- ratio = float(limit_side_len) / w
- else:
- ratio = 1.
- else:
- if min(h, w) < limit_side_len:
- if h < w:
- ratio = float(limit_side_len) / h
- else:
- ratio = float(limit_side_len) / w
- else:
- ratio = 1.
- resize_h = int(h * ratio)
- resize_w = int(w * ratio)
- resize_h = int(round(resize_h / 32) * 32)
- resize_w = int(round(resize_w / 32) * 32)
- try:
- if int(resize_w) <= 0 or int(resize_h) <= 0:
- return None, (None, None)
- img = cv2.resize(img, (int(resize_w), int(resize_h)))
- except:
- print(img.shape, resize_w, resize_h)
- sys.exit(0)
- ratio_h = resize_h / float(h)
- ratio_w = resize_w / float(w)
- # return img, np.array([h, w])
- return img, [ratio_h, ratio_w]
- def resize_image_type2(self, img):
- h, w, _ = img.shape
- resize_w = w
- resize_h = h
- # Fix the longer side
- if resize_h > resize_w:
- ratio = float(self.resize_long) / resize_h
- else:
- ratio = float(self.resize_long) / resize_w
- resize_h = int(resize_h * ratio)
- resize_w = int(resize_w * ratio)
- max_stride = 128
- resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
- resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
- img = cv2.resize(img, (int(resize_w), int(resize_h)))
- ratio_h = resize_h / float(h)
- ratio_w = resize_w / float(w)
- return img, [ratio_h, ratio_w]
- class BaseRecLabelDecode(object):
- """ Convert between text-label and text-index """
- def __init__(self, config):
- support_character_type = [
- 'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
- 'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs', 'oc',
- 'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi', 'mr',
- 'ne', 'EN'
- ]
- character_type = config['character_type']
- character_dict_path = config['character_dict_path']
- use_space_char = True
- assert character_type in support_character_type, "Only {} are supported now but get {}".format(
- support_character_type, character_type)
- self.beg_str = "sos"
- self.end_str = "eos"
- if character_type == "en":
- self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
- dict_character = list(self.character_str)
- elif character_type == "EN_symbol":
- # same with ASTER setting (use 94 char).
- self.character_str = string.printable[:-6]
- dict_character = list(self.character_str)
- elif character_type in support_character_type:
- self.character_str = ""
- assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
- character_type)
- with open(character_dict_path, "rb") as fin:
- lines = fin.readlines()
- for line in lines:
- line = line.decode('utf-8').strip("\n").strip("\r\n")
- self.character_str += line
- if use_space_char:
- self.character_str += " "
- dict_character = list(self.character_str)
- else:
- raise NotImplementedError
- self.character_type = character_type
- dict_character = self.add_special_char(dict_character)
- self.dict = {}
- for i, char in enumerate(dict_character):
- self.dict[char] = i
- self.character = dict_character
- def add_special_char(self, dict_character):
- return dict_character
- def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
- """ convert text-index into text-label. """
- result_list = []
- ignored_tokens = self.get_ignored_tokens()
- batch_size = len(text_index)
- for batch_idx in range(batch_size):
- char_list = []
- conf_list = []
- for idx in range(len(text_index[batch_idx])):
- if text_index[batch_idx][idx] in ignored_tokens:
- continue
- if is_remove_duplicate:
- # only for predict
- if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
- batch_idx][idx]:
- continue
- char_list.append(self.character[int(text_index[batch_idx][
- idx])])
- if text_prob is not None:
- conf_list.append(text_prob[batch_idx][idx])
- else:
- conf_list.append(1)
- text = ''.join(char_list)
- result_list.append((text, np.mean(conf_list)))
- return result_list
- def get_ignored_tokens(self):
- return [0] # for ctc blank
- class CTCLabelDecode(BaseRecLabelDecode):
- """ Convert between text-label and text-index """
- def __init__(
- self,
- config,
- #character_dict_path=None,
- #character_type='ch',
- #use_space_char=False,
- **kwargs):
- super(CTCLabelDecode, self).__init__(config)
- def __call__(self, preds, label=None, *args, **kwargs):
- preds_idx = preds.argmax(axis=2)
- preds_prob = preds.max(axis=2)
- text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
- if label is None:
- return text
- label = self.decode(label)
- return text, label
- def add_special_char(self, dict_character):
- dict_character = ['blank'] + dict_character
- return dict_character
- class CharacterOps(object):
- """ Convert between text-label and text-index """
- def __init__(self, config):
- self.character_type = config['character_type']
- self.loss_type = config['loss_type']
- if self.character_type == "en":
- self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
- dict_character = list(self.character_str)
- elif self.character_type == "ch":
- character_dict_path = config['character_dict_path']
- self.character_str = ""
- with open(character_dict_path, "rb") as fin:
- lines = fin.readlines()
- for line in lines:
- line = line.decode('utf-8').strip("\n").strip("\r\n")
- self.character_str += line
- dict_character = list(self.character_str)
- elif self.character_type == "en_sensitive":
- # same with ASTER setting (use 94 char).
- self.character_str = string.printable[:-6]
- dict_character = list(self.character_str)
- else:
- self.character_str = None
- assert self.character_str is not None, \
- "Nonsupport type of the character: {}".format(self.character_str)
- self.beg_str = "sos"
- self.end_str = "eos"
- if self.loss_type == "attention":
- dict_character = [self.beg_str, self.end_str] + dict_character
- self.dict = {}
- for i, char in enumerate(dict_character):
- self.dict[char] = i
- self.character = dict_character
- def encode(self, text):
- """convert text-label into text-index.
- input:
- text: text labels of each image. [batch_size]
- output:
- text: concatenated text index for CTCLoss.
- [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
- length: length of each text. [batch_size]
- """
- if self.character_type == "en":
- text = text.lower()
- text_list = []
- for char in text:
- if char not in self.dict:
- continue
- text_list.append(self.dict[char])
- text = np.array(text_list)
- return text
- def decode(self, text_index, is_remove_duplicate=False):
- """ convert text-index into text-label. """
- char_list = []
- char_num = self.get_char_num()
- if self.loss_type == "attention":
- beg_idx = self.get_beg_end_flag_idx("beg")
- end_idx = self.get_beg_end_flag_idx("end")
- ignored_tokens = [beg_idx, end_idx]
- else:
- ignored_tokens = [char_num]
- for idx in range(len(text_index)):
- if text_index[idx] in ignored_tokens:
- continue
- if is_remove_duplicate:
- if idx > 0 and text_index[idx - 1] == text_index[idx]:
- continue
- char_list.append(self.character[text_index[idx]])
- text = ''.join(char_list)
- return text
- def get_char_num(self):
- return len(self.character)
- def get_beg_end_flag_idx(self, beg_or_end):
- if self.loss_type == "attention":
- if beg_or_end == "beg":
- idx = np.array(self.dict[self.beg_str])
- elif beg_or_end == "end":
- idx = np.array(self.dict[self.end_str])
- else:
- assert False, "Unsupport type %s in get_beg_end_flag_idx"\
- % beg_or_end
- return idx
- else:
- err = "error in get_beg_end_flag_idx when using the loss %s"\
- % (self.loss_type)
- assert False, err
- class OCRReader(object):
- def __init__(self,
- algorithm="CRNN",
- image_shape=[3, 32, 320],
- char_type="ch",
- batch_num=1,
- char_dict_path="./ppocr_keys_v1.txt"):
- self.rec_image_shape = image_shape
- self.character_type = char_type
- self.rec_batch_num = batch_num
- char_ops_params = {}
- char_ops_params["character_type"] = char_type
- char_ops_params["character_dict_path"] = char_dict_path
- char_ops_params['loss_type'] = 'ctc'
- self.char_ops = CharacterOps(char_ops_params)
- self.label_ops = CTCLabelDecode(char_ops_params)
- def resize_norm_img(self, img, max_wh_ratio):
- imgC, imgH, imgW = self.rec_image_shape
- if self.character_type == "ch":
- imgW = int(32 * max_wh_ratio)
- h = img.shape[0]
- w = img.shape[1]
- ratio = w / float(h)
- if math.ceil(imgH * ratio) > imgW:
- resized_w = imgW
- else:
- resized_w = int(math.ceil(imgH * ratio))
- resized_image = cv2.resize(img, (resized_w, imgH))
- resized_image = resized_image.astype('float32')
- resized_image = resized_image.transpose((2, 0, 1)) / 255
- resized_image -= 0.5
- resized_image /= 0.5
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
- padding_im[:, :, 0:resized_w] = resized_image
- return padding_im
- def preprocess(self, img_list):
- img_num = len(img_list)
- norm_img_batch = []
- max_wh_ratio = 0
- for ino in range(img_num):
- h, w = img_list[ino].shape[0:2]
- wh_ratio = w * 1.0 / h
- max_wh_ratio = max(max_wh_ratio, wh_ratio)
- for ino in range(img_num):
- norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
- norm_img = norm_img[np.newaxis, :]
- norm_img_batch.append(norm_img)
- norm_img_batch = np.concatenate(norm_img_batch)
- norm_img_batch = norm_img_batch.copy()
- return norm_img_batch[0]
- def postprocess(self, outputs, with_score=False):
- preds = outputs["softmax_5.tmp_0"]
- try:
- preds = preds.numpy()
- except:
- pass
- preds_idx = preds.argmax(axis=2)
- preds_prob = preds.max(axis=2)
- text = self.label_ops.decode(
- preds_idx, preds_prob, is_remove_duplicate=True)
- return text
|