123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from paddle_serving_server.web_service import WebService, Op
- import logging
- import numpy as np
- import cv2
- import base64
- # from paddle_serving_app.reader import OCRReader
- from ocr_reader import OCRReader, DetResizeForTest, ArgsParser
- from paddle_serving_app.reader import Sequential, ResizeByFactor
- from paddle_serving_app.reader import Div, Normalize, Transpose
- from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
- _LOGGER = logging.getLogger()
- class DetOp(Op):
- def init_op(self):
- self.det_preprocess = Sequential([
- DetResizeForTest(), Div(255),
- Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
- (2, 0, 1))
- ])
- self.filter_func = FilterBoxes(10, 10)
- self.post_func = DBPostProcess({
- "thresh": 0.3,
- "box_thresh": 0.5,
- "max_candidates": 1000,
- "unclip_ratio": 1.5,
- "min_size": 3
- })
- def preprocess(self, input_dicts, data_id, log_id):
- (_, input_dict), = input_dicts.items()
- data = base64.b64decode(input_dict["image"].encode('utf8'))
- self.raw_im = data
- data = np.fromstring(data, np.uint8)
- # Note: class variables(self.var) can only be used in process op mode
- im = cv2.imdecode(data, cv2.IMREAD_COLOR)
- self.ori_h, self.ori_w, _ = im.shape
- det_img = self.det_preprocess(im)
- _, self.new_h, self.new_w = det_img.shape
- return {"x": det_img[np.newaxis, :].copy()}, False, None, ""
- def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
- det_out = list(fetch_dict.values())[0]
- ratio_list = [
- float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
- ]
- dt_boxes_list = self.post_func(det_out, [ratio_list])
- dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
- out_dict = {"dt_boxes": str(dt_boxes)}
- return out_dict, None, ""
- class OcrService(WebService):
- def get_pipeline_response(self, read_op):
- det_op = DetOp(name="det", input_ops=[read_op])
- return det_op
- uci_service = OcrService(name="ocr")
- FLAGS = ArgsParser().parse_args()
- uci_service.prepare_pipeline_config(yml_dict=FLAGS.conf_dict)
- uci_service.run_service()
|