123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- sys.path.insert(0, ".")
- import copy
- import paddlehub
- from paddlehub.common.logger import logger
- from paddlehub.module.module import moduleinfo, runnable, serving
- import cv2
- import paddlehub as hub
- from tools.infer.utility import base64_to_cv2
- from tools.infer.predict_rec import TextRecognizer
- from tools.infer.utility import parse_args
- from deploy.hubserving.ocr_rec.params import read_params
- @moduleinfo(
- name="ocr_rec",
- version="1.0.0",
- summary="ocr recognition service",
- author="paddle-dev",
- author_email="paddle-dev@baidu.com",
- type="cv/text_recognition")
- class OCRRec(hub.Module):
- def _initialize(self, use_gpu=False, enable_mkldnn=False):
- """
- initialize with the necessary elements
- """
- cfg = self.merge_configs()
- cfg.use_gpu = use_gpu
- if use_gpu:
- try:
- _places = os.environ["CUDA_VISIBLE_DEVICES"]
- int(_places[0])
- print("use gpu: ", use_gpu)
- print("CUDA_VISIBLE_DEVICES: ", _places)
- cfg.gpu_mem = 8000
- except:
- raise RuntimeError(
- "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
- )
- cfg.ir_optim = True
- cfg.enable_mkldnn = enable_mkldnn
- self.text_recognizer = TextRecognizer(cfg)
- def merge_configs(self, ):
- # deafult cfg
- backup_argv = copy.deepcopy(sys.argv)
- sys.argv = sys.argv[:1]
- cfg = parse_args()
- update_cfg_map = vars(read_params())
- for key in update_cfg_map:
- cfg.__setattr__(key, update_cfg_map[key])
- sys.argv = copy.deepcopy(backup_argv)
- return cfg
- def read_images(self, paths=[]):
- images = []
- for img_path in paths:
- assert os.path.isfile(
- img_path), "The {} isn't a valid file.".format(img_path)
- img = cv2.imread(img_path)
- if img is None:
- logger.info("error in loading image:{}".format(img_path))
- continue
- images.append(img)
- return images
- def predict(self, images=[], paths=[]):
- """
- Get the text box in the predicted images.
- Args:
- images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
- paths (list[str]): The paths of images. If paths not images
- Returns:
- res (list): The result of text detection box and save path of images.
- """
- if images != [] and isinstance(images, list) and paths == []:
- predicted_data = images
- elif images == [] and isinstance(paths, list) and paths != []:
- predicted_data = self.read_images(paths)
- else:
- raise TypeError("The input data is inconsistent with expectations.")
- assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
- img_list = []
- for img in predicted_data:
- if img is None:
- continue
- img_list.append(img)
- rec_res_final = []
- try:
- rec_res, predict_time = self.text_recognizer(img_list)
- for dno in range(len(rec_res)):
- text, score = rec_res[dno]
- rec_res_final.append({
- 'text': text,
- 'confidence': float(score),
- })
- except Exception as e:
- print(e)
- return [[]]
- return [rec_res_final]
- @serving
- def serving_method(self, images, **kwargs):
- """
- Run as a service.
- """
- images_decode = [base64_to_cv2(image) for image in images]
- results = self.predict(images_decode, **kwargs)
- return results
- if __name__ == '__main__':
- ocr = OCRRec()
- ocr._initialize()
- image_path = [
- './doc/imgs_words/ch/word_1.jpg',
- './doc/imgs_words/ch/word_2.jpg',
- './doc/imgs_words/ch/word_3.jpg',
- ]
- res = ocr.predict(paths=image_path)
- print(res)
|