123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687 |
- import paddle
- import numpy as np
- import copy
- def org_tcl_rois(batch_size, pos_lists, pos_masks, label_lists, tcl_bs):
- """
- """
- pos_lists_, pos_masks_, label_lists_ = [], [], []
- img_bs = batch_size
- ngpu = int(batch_size / img_bs)
- img_ids = np.array(pos_lists, dtype=np.int32)[:, 0, 0].copy()
- pos_lists_split, pos_masks_split, label_lists_split = [], [], []
- for i in range(ngpu):
- pos_lists_split.append([])
- pos_masks_split.append([])
- label_lists_split.append([])
- for i in range(img_ids.shape[0]):
- img_id = img_ids[i]
- gpu_id = int(img_id / img_bs)
- img_id = img_id % img_bs
- pos_list = pos_lists[i].copy()
- pos_list[:, 0] = img_id
- pos_lists_split[gpu_id].append(pos_list)
- pos_masks_split[gpu_id].append(pos_masks[i].copy())
- label_lists_split[gpu_id].append(copy.deepcopy(label_lists[i]))
- # repeat or delete
- for i in range(ngpu):
- vp_len = len(pos_lists_split[i])
- if vp_len <= tcl_bs:
- for j in range(0, tcl_bs - vp_len):
- pos_list = pos_lists_split[i][j].copy()
- pos_lists_split[i].append(pos_list)
- pos_mask = pos_masks_split[i][j].copy()
- pos_masks_split[i].append(pos_mask)
- label_list = copy.deepcopy(label_lists_split[i][j])
- label_lists_split[i].append(label_list)
- else:
- for j in range(0, vp_len - tcl_bs):
- c_len = len(pos_lists_split[i])
- pop_id = np.random.permutation(c_len)[0]
- pos_lists_split[i].pop(pop_id)
- pos_masks_split[i].pop(pop_id)
- label_lists_split[i].pop(pop_id)
- # merge
- for i in range(ngpu):
- pos_lists_.extend(pos_lists_split[i])
- pos_masks_.extend(pos_masks_split[i])
- label_lists_.extend(label_lists_split[i])
- return pos_lists_, pos_masks_, label_lists_
- def pre_process(label_list, pos_list, pos_mask, max_text_length, max_text_nums,
- pad_num, tcl_bs):
- label_list = label_list.numpy()
- batch, _, _, _ = label_list.shape
- pos_list = pos_list.numpy()
- pos_mask = pos_mask.numpy()
- pos_list_t = []
- pos_mask_t = []
- label_list_t = []
- for i in range(batch):
- for j in range(max_text_nums):
- if pos_mask[i, j].any():
- pos_list_t.append(pos_list[i][j])
- pos_mask_t.append(pos_mask[i][j])
- label_list_t.append(label_list[i][j])
- pos_list, pos_mask, label_list = org_tcl_rois(batch, pos_list_t, pos_mask_t,
- label_list_t, tcl_bs)
- label = []
- tt = [l.tolist() for l in label_list]
- for i in range(tcl_bs):
- k = 0
- for j in range(max_text_length):
- if tt[i][j][0] != pad_num:
- k += 1
- else:
- break
- label.append(k)
- label = paddle.to_tensor(label)
- label = paddle.cast(label, dtype='int64')
- pos_list = paddle.to_tensor(pos_list)
- pos_mask = paddle.to_tensor(pos_mask)
- label_list = paddle.squeeze(paddle.to_tensor(label_list), axis=2)
- label_list = paddle.cast(label_list, dtype='int32')
- return pos_list, pos_mask, label_list, label
|