1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from __future__ import unicode_literals
- import copy
- import paddle
- __all__ = ['build_optimizer']
- def build_lr_scheduler(lr_config, epochs, step_each_epoch):
- from . import learning_rate
- lr_config.update({'epochs': epochs, 'step_each_epoch': step_each_epoch})
- lr_name = lr_config.pop('name', 'Const')
- lr = getattr(learning_rate, lr_name)(**lr_config)()
- return lr
- def build_optimizer(config, epochs, step_each_epoch, model):
- from . import regularizer, optimizer
- config = copy.deepcopy(config)
- # step1 build lr
- lr = build_lr_scheduler(config.pop('lr'), epochs, step_each_epoch)
- # step2 build regularization
- if 'regularizer' in config and config['regularizer'] is not None:
- reg_config = config.pop('regularizer')
- reg_name = reg_config.pop('name')
- if not hasattr(regularizer, reg_name):
- reg_name += 'Decay'
- reg = getattr(regularizer, reg_name)(**reg_config)()
- elif 'weight_decay' in config:
- reg = config.pop('weight_decay')
- else:
- reg = None
- # step3 build optimizer
- optim_name = config.pop('name')
- if 'clip_norm' in config:
- clip_norm = config.pop('clip_norm')
- grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm)
- elif 'clip_norm_global' in config:
- clip_norm = config.pop('clip_norm_global')
- grad_clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=clip_norm)
- else:
- grad_clip = None
- optim = getattr(optimizer, optim_name)(learning_rate=lr,
- weight_decay=reg,
- grad_clip=grad_clip,
- **config)
- return optim(model), lr
|