PPOCRv3_det_train.md 10 KB

PP-OCRv3 文本检测模型训练

1. 简介

PP-OCRv3在PP-OCRv2的基础上进一步升级。本节介绍PP-OCRv3检测模型的训练步骤。有关PP-OCRv3策略介绍参考文档

2. 检测训练

PP-OCRv3检测模型是对PP-OCRv2中的CML(Collaborative Mutual Learning) 协同互学习文本检测蒸馏策略进行了升级。PP-OCRv3分别针对检测教师模型和学生模型进行进一步效果优化。其中,在对教师模型优化时,提出了大感受野的PAN结构LK-PAN和引入了DML(Deep Mutual Learning)蒸馏策略;在对学生模型优化时,提出了残差注意力机制的FPN结构RSE-FPN。

PP-OCRv3检测训练包括两个步骤:

  • 步骤1:采用DML蒸馏方法训练检测教师模型
  • 步骤2:使用步骤1得到的教师模型采用CML方法训练出轻量学生模型

2.1 准备数据和运行环境

训练数据采用icdar2015数据,准备训练集步骤参考ocr_dataset.

运行环境准备参考文档

2.2 训练教师模型

教师模型训练的配置文件是ch_PP-OCRv3_det_dml.yml。教师模型模型结构的Backbone、Neck、Head分别为Resnet50, LKPAN, DBHead,采用DML的蒸馏方法训练。有关配置文件的详细介绍参考文档

下载ImageNet预训练模型:

# 下载ResNet50_vd的预训练模型
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet50_vd_ssld_pretrained.pdparams

启动训练

# 单卡训练
python3 tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml \
    -o Architecture.Models.Student.pretrained=./pretrain_models/ResNet50_vd_ssld_pretrained \
       Architecture.Models.Student2.pretrained=./pretrain_models/ResNet50_vd_ssld_pretrained \
       Global.save_model_dir=./output/
# 如果要使用多GPU分布式训练,请使用如下命令:
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml \
    -o Architecture.Models.Student.pretrained=./pretrain_models/ResNet50_vd_ssld_pretrained \
       Architecture.Models.Student2.pretrained=./pretrain_models/ResNet50_vd_ssld_pretrained \
       Global.save_model_dir=./output/

训练过程中保存的模型在output目录下,包含以下文件:

best_accuracy.states  
best_accuracy.pdparams  # 默认保存最优精度的模型参数
best_accuracy.pdopt     # 默认保存最优精度的优化器相关参数
latest.states  
latest.pdparams  # 默认保存的最新模型参数
latest.pdopt     # 默认保存的最新模型的优化器相关参数

其中,best_accuracy是保存的精度最高的模型参数,可以直接使用该模型评估。

模型评估命令如下:

python3 tools/eval.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml -o Global.checkpoints=./output/best_accuracy

训练的教师模型结构更大,精度更高,用于提升学生模型的精度。

提取教师模型参数 best_accuracy包含两个模型的参数,分别对应配置文件中的Student,Student2。提取Student的参数方法如下:

import paddle
# 加载预训练模型
all_params = paddle.load("output/best_accuracy.pdparams")
# 查看权重参数的keys
print(all_params.keys())
# 模型的权重提取
s_params = {key[len("Student."):]: all_params[key] for key in all_params if "Student." in key}
# 查看模型权重参数的keys
print(s_params.keys())
# 保存
paddle.save(s_params, "./pretrain_models/dml_teacher.pdparams")

提取出来的模型参数可以用于模型进一步的finetune训练或者蒸馏训练。

2.3 训练学生模型

训练学生模型的配置文件是ch_PP-OCRv3_det_cml.yml 上一节训练得到的教师模型作为监督,采用CML方式训练得到轻量的学生模型。

下载学生模型的ImageNet预训练模型:

# 下载MobileNetV3的预训练模型
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams

启动训练

# 单卡训练
python3 tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml \
    -o Architecture.Models.Student.pretrained=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
       Architecture.Models.Student2.pretrained=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
       Architecture.Models.Teacher.pretrained=./pretrain_models/dml_teacher \
       Global.save_model_dir=./output/
# 如果要使用多GPU分布式训练,请使用如下命令:
python3  -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml \
    -o Architecture.Models.Student.pretrained=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
       Architecture.Models.Student2.pretrained=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
       Architecture.Models.Teacher.pretrained=./pretrain_models/dml_teacher \
       Global.save_model_dir=./output/

训练过程中保存的模型在output目录下, 模型评估命令如下:

python3 tools/eval.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml -o Global.checkpoints=./output/best_accuracy

best_accuracy包含三个模型的参数,分别对应配置文件中的Student,Student2,Teacher。提取Student参数的方法如下:

import paddle
# 加载预训练模型
all_params = paddle.load("output/best_accuracy.pdparams")
# 查看权重参数的keys
print(all_params.keys())
# 模型的权重提取
s_params = {key[len("Student."):]: all_params[key] for key in all_params if "Student." in key}
# 查看模型权重参数的keys
print(s_params.keys())
# 保存
paddle.save(s_params, "./pretrain_models/cml_student.pdparams")

提取出来的Student的参数可用于模型部署或者做进一步的finetune训练。

3. 基于PP-OCRv3检测finetune训练

本节介绍如何使用PP-OCRv3检测模型在其他场景上的finetune训练。

finetune训练适用于三种场景:

  • 基于CML蒸馏方法的finetune训练,适用于教师模型在使用场景上精度高于PP-OCRv3检测模型,且希望得到一个轻量检测模型。
  • 基于PP-OCRv3轻量检测模型的finetune训练,无需训练教师模型,希望在PP-OCRv3检测模型基础上提升使用场景上的精度。
  • 基于DML蒸馏方法的finetune训练,适用于采用DML方法进一步提升精度的场景。

基于CML蒸馏方法的finetune训练

下载PP-OCRv3训练模型:

wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar
tar xf ch_PP-OCRv3_det_distill_train.tar

ch_PP-OCRv3_det_distill_train/best_accuracy.pdparams包含CML配置文件中Student、Student2、Teacher模型的参数。

启动训练:

# 单卡训练
python3 tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml \
    -o Global.pretrained_model=./ch_PP-OCRv3_det_distill_train/best_accuracy \
       Global.save_model_dir=./output/
# 如果要使用多GPU分布式训练,请使用如下命令:
python3  -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml \
    -o Global.pretrained_model=./ch_PP-OCRv3_det_distill_train/best_accuracy  \
       Global.save_model_dir=./output/

基于PP-OCRv3轻量检测模型的finetune训练

下载PP-OCRv3训练模型,并提取Student结构的模型参数:

wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar
tar xf ch_PP-OCRv3_det_distill_train.tar

提取Student参数的方法如下:

import paddle
# 加载预训练模型
all_params = paddle.load("output/best_accuracy.pdparams")
# 查看权重参数的keys
print(all_params.keys())
# 模型的权重提取
s_params = {key[len("Student."):]: all_params[key] for key in all_params if "Student." in key}
# 查看模型权重参数的keys
print(s_params.keys())
# 保存
paddle.save(s_params, "./student.pdparams")

使用配置文件ch_PP-OCRv3_det_student.yml训练。

启动训练

# 单卡训练
python3 tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml \
    -o Global.pretrained_model=./student \
       Global.save_model_dir=./output/
# 如果要使用多GPU分布式训练,请使用如下命令:
python3  -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml \
    -o Global.pretrained_model=./student \
       Global.save_model_dir=./output/

基于DML蒸馏方法的finetune训练

以ch_PP-OCRv3_det_distill_train中的Teacher模型为例,首先提取Teacher结构的参数,方法如下:

import paddle
# 加载预训练模型
all_params = paddle.load("ch_PP-OCRv3_det_distill_train/best_accuracy.pdparams")
# 查看权重参数的keys
print(all_params.keys())
# 模型的权重提取
s_params = {key[len("Teacher."):]: all_params[key] for key in all_params if "Teacher." in key}
# 查看模型权重参数的keys
print(s_params.keys())
# 保存
paddle.save(s_params, "./teacher.pdparams")

启动训练

# 单卡训练
python3 tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml \
    -o Architecture.Models.Student.pretrained=./teacher \
       Architecture.Models.Student2.pretrained=./teacher \
       Global.save_model_dir=./output/
# 如果要使用多GPU分布式训练,请使用如下命令:
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml \
    -o Architecture.Models.Student.pretrained=./teacher \
       Architecture.Models.Student2.pretrained=./teacher \
       Global.save_model_dir=./output/