English | 简体中文 | हिन्दी | 日本語 | 한국인 | Pу́сский язы́к
简介
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力开发者训练出更好的模型,并应用落地。
📣 近期更新
- 🔨2022.11 新增实现4种前沿算法:文本检测 DRRG, 文本识别 RFL, 文本超分Text Telescope,公式识别CAN
- 2022.10 优化JS版PP-OCRv3模型:模型大小仅4.3M,预测速度提升8倍,配套web demo开箱即用
- 💥 直播回放:PaddleOCR研发团队详解PP-StructureV2优化策略。微信扫描下方二维码,关注公众号并填写问卷后进入官方交流群,获取直播回放链接与20G重磅OCR学习大礼包(内含PDF转Word应用程序、10种垂类模型、《动手学OCR》电子书等)
- 🔥2022.8.24 发布 PaddleOCR release/2.6
- 发布PP-StructureV2,系统功能性能全面升级,适配中文场景,新增支持版面复原,支持一行命令完成PDF转Word;
- 版面分析模型优化:模型存储减少95%,速度提升11倍,平均CPU耗时仅需41ms;
- 表格识别模型优化:设计3大优化策略,预测耗时不变情况下,模型精度提升6%;
- 关键信息抽取模型优化:设计视觉无关模型结构,语义实体识别精度提升2.8%,关系抽取精度提升9.1%。
- 🔥2022.8 发布 OCR场景应用集合:包含数码管、液晶屏、车牌、高精度SVTR模型、手写体识别等9个垂类模型,覆盖通用,制造、金融、交通行业的主要OCR垂类应用。
- 2022.8 新增实现8种前沿算法
- 2022.5.9 发布 PaddleOCR release/2.5
- 发布PP-OCRv3,速度可比情况下,中文场景效果相比于PP-OCRv2再提升5%,英文场景提升11%,80语种多语言模型平均识别准确率提升5%以上;
- 发布半自动标注工具PPOCRLabelv2:新增表格文字图像、图像关键信息抽取任务和不规则文字图像的标注功能;
- 发布OCR产业落地工具集:打通22种训练部署软硬件环境与方式,覆盖企业90%的训练部署环境需求;
- 发布交互式OCR开源电子书《动手学OCR》,覆盖OCR全栈技术的前沿理论与代码实践,并配套教学视频。
更多
🌟 特性
支持多种OCR相关前沿算法,在此基础上打造产业级特色模型PP-OCR和PP-Structure,并打通数据生产、模型训练、压缩、预测部署全流程。
上述内容的使用方法建议从文档教程中的快速开始体验
⚡ 快速开始
📚《动手学OCR》电子书
👫 开源社区
- 📑项目合作: 如果您是企业开发者且有明确的OCR垂类应用需求,填写问卷后可免费与官方团队展开不同层次的合作。
- 👫加入社区: 微信扫描二维码并填写问卷之后,加入交流群领取20G重磅OCR学习大礼包
- 包括《动手学OCR》电子书 ,配套讲解视频和notebook项目;PaddleOCR历次发版直播课回放链接;
- OCR场景应用模型集合: 包含数码管、液晶屏、车牌、高精度SVTR模型、手写体识别等垂类模型,覆盖通用,制造、金融、交通行业的主要OCR垂类应用。
- PDF2Word应用程序;OCR社区优秀开发者项目分享视频。
- 🏅️社区项目:社区项目文档中包含了社区用户使用PaddleOCR开发的各种工具、应用以及为PaddleOCR贡献的功能、优化的文档与代码等,是官方为社区开发者打造的荣誉墙,也是帮助优质项目宣传的广播站。
- 🎁社区常规赛:社区常规赛是面向OCR开发者的积分赛事,覆盖文档、代码、模型和应用四大类型,以季度为单位评选并发放奖励,赛题详情与报名方法可参考链接。
PaddleOCR官方交流群二维码
🛠️ PP-OCR系列模型列表(更新中)
PaddleOCR场景应用模型
- 更多制造、金融、交通行业的主要OCR垂类应用模型(如电表、液晶屏、高精度SVTR模型等),可参考场景应用模型下载
📖 文档教程
PP-OCRv3 中文模型
PP-OCRv3 英文模型
PP-OCRv3 多语言模型
PP-Structure 文档分析
许可证书
本项目的发布受Apache 2.0 license许可认证。