123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/whai362/PSENet/blob/python3/models/head/psenet_head.py
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import cv2
- import paddle
- from paddle.nn import functional as F
- from ppocr.postprocess.pse_postprocess.pse import pse
- class PSEPostProcess(object):
- """
- The post process for PSE.
- """
- def __init__(self,
- thresh=0.5,
- box_thresh=0.85,
- min_area=16,
- box_type='quad',
- scale=4,
- **kwargs):
- assert box_type in ['quad', 'poly'], 'Only quad and poly is supported'
- self.thresh = thresh
- self.box_thresh = box_thresh
- self.min_area = min_area
- self.box_type = box_type
- self.scale = scale
- def __call__(self, outs_dict, shape_list):
- pred = outs_dict['maps']
- if not isinstance(pred, paddle.Tensor):
- pred = paddle.to_tensor(pred)
- pred = F.interpolate(
- pred, scale_factor=4 // self.scale, mode='bilinear')
- score = F.sigmoid(pred[:, 0, :, :])
- kernels = (pred > self.thresh).astype('float32')
- text_mask = kernels[:, 0, :, :]
- text_mask = paddle.unsqueeze(text_mask, axis=1)
- kernels[:, 0:, :, :] = kernels[:, 0:, :, :] * text_mask
- score = score.numpy()
- kernels = kernels.numpy().astype(np.uint8)
- boxes_batch = []
- for batch_index in range(pred.shape[0]):
- boxes, scores = self.boxes_from_bitmap(score[batch_index],
- kernels[batch_index],
- shape_list[batch_index])
- boxes_batch.append({'points': boxes, 'scores': scores})
- return boxes_batch
- def boxes_from_bitmap(self, score, kernels, shape):
- label = pse(kernels, self.min_area)
- return self.generate_box(score, label, shape)
- def generate_box(self, score, label, shape):
- src_h, src_w, ratio_h, ratio_w = shape
- label_num = np.max(label) + 1
- boxes = []
- scores = []
- for i in range(1, label_num):
- ind = label == i
- points = np.array(np.where(ind)).transpose((1, 0))[:, ::-1]
- if points.shape[0] < self.min_area:
- label[ind] = 0
- continue
- score_i = np.mean(score[ind])
- if score_i < self.box_thresh:
- label[ind] = 0
- continue
- if self.box_type == 'quad':
- rect = cv2.minAreaRect(points)
- bbox = cv2.boxPoints(rect)
- elif self.box_type == 'poly':
- box_height = np.max(points[:, 1]) + 10
- box_width = np.max(points[:, 0]) + 10
- mask = np.zeros((box_height, box_width), np.uint8)
- mask[points[:, 1], points[:, 0]] = 255
- contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL,
- cv2.CHAIN_APPROX_SIMPLE)
- bbox = np.squeeze(contours[0], 1)
- else:
- raise NotImplementedError
- bbox[:, 0] = np.clip(np.round(bbox[:, 0] / ratio_w), 0, src_w)
- bbox[:, 1] = np.clip(np.round(bbox[:, 1] / ratio_h), 0, src_h)
- boxes.append(bbox)
- scores.append(score_i)
- return boxes, scores
|