123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- Global:
- use_gpu: true
- epoch_num: 1500
- log_smooth_window: 20
- print_batch_step: 20
- save_model_dir: ./output/det_r50_dcn_fce_ctw/
- save_epoch_step: 100
- # evaluation is run every 835 iterations
- eval_batch_step: [0, 835]
- cal_metric_during_train: False
- pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained
- checkpoints:
- save_inference_dir:
- use_visualdl: False
- infer_img: doc/imgs_en/img_10.jpg
- save_res_path: ./output/det_fce/predicts_fce.txt
- Architecture:
- model_type: det
- algorithm: FCE
- Transform:
- Backbone:
- name: ResNet_vd
- layers: 50
- dcn_stage: [False, True, True, True]
- out_indices: [1,2,3]
- Neck:
- name: FCEFPN
- out_channels: 256
- has_extra_convs: False
- extra_stage: 0
- Head:
- name: FCEHead
- fourier_degree: 5
- Loss:
- name: FCELoss
- fourier_degree: 5
- num_sample: 50
-
- Optimizer:
- name: Adam
- beta1: 0.9
- beta2: 0.999
- lr:
- learning_rate: 0.0001
- regularizer:
- name: 'L2'
- factor: 0
- PostProcess:
- name: FCEPostProcess
- scales: [8, 16, 32]
- alpha: 1.0
- beta: 1.0
- fourier_degree: 5
- box_type: 'poly'
- Metric:
- name: DetFCEMetric
- main_indicator: hmean
- Train:
- dataset:
- name: SimpleDataSet
- data_dir: ./train_data/ctw1500/imgs/
- label_file_list:
- - ./train_data/ctw1500/imgs/training.txt
- transforms:
- - DecodeImage: # load image
- img_mode: BGR
- channel_first: False
- ignore_orientation: True
- - DetLabelEncode: # Class handling label
- - ColorJitter:
- brightness: 0.142
- saturation: 0.5
- contrast: 0.5
- - RandomScaling:
- - RandomCropFlip:
- crop_ratio: 0.5
- - RandomCropPolyInstances:
- crop_ratio: 0.8
- min_side_ratio: 0.3
- - RandomRotatePolyInstances:
- rotate_ratio: 0.5
- max_angle: 30
- pad_with_fixed_color: False
- - SquareResizePad:
- target_size: 800
- pad_ratio: 0.6
- - IaaAugment:
- augmenter_args:
- - { 'type': Fliplr, 'args': { 'p': 0.5 } }
- - FCENetTargets:
- fourier_degree: 5
- - NormalizeImage:
- scale: 1./255.
- mean: [0.485, 0.456, 0.406]
- std: [0.229, 0.224, 0.225]
- order: 'hwc'
- - ToCHWImage:
- - KeepKeys:
- keep_keys: ['image', 'p3_maps', 'p4_maps', 'p5_maps'] # dataloader will return list in this order
- loader:
- shuffle: True
- drop_last: False
- batch_size_per_card: 6
- num_workers: 8
- Eval:
- dataset:
- name: SimpleDataSet
- data_dir: ./train_data/ctw1500/imgs/
- label_file_list:
- - ./train_data/ctw1500/imgs/test.txt
- transforms:
- - DecodeImage: # load image
- img_mode: BGR
- channel_first: False
- ignore_orientation: True
- - DetLabelEncode: # Class handling label
- - DetResizeForTest:
- limit_type: 'min'
- limit_side_len: 736
- - NormalizeImage:
- scale: 1./255.
- mean: [0.485, 0.456, 0.406]
- std: [0.229, 0.224, 0.225]
- order: 'hwc'
- - Pad:
- - ToCHWImage:
- - KeepKeys:
- keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
- loader:
- shuffle: False
- drop_last: False
- batch_size_per_card: 1 # must be 1
- num_workers: 2
|