# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import traceback import six import sys if sys.version_info >= (3, 0): pass else: pass import numpy as np import paddle import paddle.nn.functional as F from copy import deepcopy from paddle.io import DataLoader, DistributedBatchSampler from .utils import default_collate_fn from ppdet.core.workspace import register from . import transform from .shm_utils import _get_shared_memory_size_in_M from ppdet.utils.logger import setup_logger logger = setup_logger('reader') MAIN_PID = os.getpid() class Compose(object): def __init__(self, transforms, num_classes=80): self.transforms = transforms self.transforms_cls = [] for t in self.transforms: for k, v in t.items(): op_cls = getattr(transform, k) f = op_cls(**v) if hasattr(f, 'num_classes'): f.num_classes = num_classes self.transforms_cls.append(f) def __call__(self, data): for f in self.transforms_cls: try: data = f(data) except Exception as e: stack_info = traceback.format_exc() logger.warning("fail to map sample transform [{}] " "with error: {} and stack:\n{}".format( f, e, str(stack_info))) raise e return data class BatchCompose(Compose): def __init__(self, transforms, num_classes=80, collate_batch=True): super(BatchCompose, self).__init__(transforms, num_classes) self.collate_batch = collate_batch def __call__(self, data): for f in self.transforms_cls: try: data = f(data) except Exception as e: stack_info = traceback.format_exc() logger.warning("fail to map batch transform [{}] " "with error: {} and stack:\n{}".format( f, e, str(stack_info))) raise e # remove keys which is not needed by model extra_key = ['h', 'w', 'flipped'] for k in extra_key: for sample in data: if k in sample: sample.pop(k) # batch data, if user-define batch function needed # use user-defined here if self.collate_batch: batch_data = default_collate_fn(data) else: batch_data = {} for k in data[0].keys(): tmp_data = [] for i in range(len(data)): tmp_data.append(data[i][k]) if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k: tmp_data = np.stack(tmp_data, axis=0) batch_data[k] = tmp_data return batch_data class BaseDataLoader(object): """ Base DataLoader implementation for detection models Args: sample_transforms (list): a list of transforms to perform on each sample batch_transforms (list): a list of transforms to perform on batch batch_size (int): batch size for batch collating, default 1. shuffle (bool): whether to shuffle samples drop_last (bool): whether to drop the last incomplete, default False num_classes (int): class number of dataset, default 80 collate_batch (bool): whether to collate batch in dataloader. If set to True, the samples will collate into batch according to the batch size. Otherwise, the ground-truth will not collate, which is used when the number of ground-truch is different in samples. use_shared_memory (bool): whether to use shared memory to accelerate data loading, enable this only if you are sure that the shared memory size of your OS is larger than memory cost of input datas of model. Note that shared memory will be automatically disabled if the shared memory of OS is less than 1G, which is not enough for detection models. Default False. """ def __init__(self, sample_transforms=[], batch_transforms=[], batch_size=1, shuffle=False, drop_last=False, num_classes=80, collate_batch=True, use_shared_memory=False, **kwargs): # sample transform self._sample_transforms = Compose( sample_transforms, num_classes=num_classes) # batch transfrom self._batch_transforms = BatchCompose(batch_transforms, num_classes, collate_batch) self.batch_size = batch_size self.shuffle = shuffle self.drop_last = drop_last self.use_shared_memory = use_shared_memory self.kwargs = kwargs def __call__(self, dataset, worker_num, batch_sampler=None, return_list=False): self.dataset = dataset self.dataset.check_or_download_dataset() self.dataset.parse_dataset() # get data self.dataset.set_transform(self._sample_transforms) # set kwargs self.dataset.set_kwargs(**self.kwargs) # batch sampler if batch_sampler is None: self._batch_sampler = DistributedBatchSampler( self.dataset, batch_size=self.batch_size, shuffle=self.shuffle, drop_last=self.drop_last) else: self._batch_sampler = batch_sampler # DataLoader do not start sub-process in Windows and Mac # system, do not need to use shared memory use_shared_memory = self.use_shared_memory and \ sys.platform not in ['win32', 'darwin'] # check whether shared memory size is bigger than 1G(1024M) if use_shared_memory: shm_size = _get_shared_memory_size_in_M() if shm_size is not None and shm_size < 1024.: logger.warning("Shared memory size is less than 1G, " "disable shared_memory in DataLoader") use_shared_memory = False self.dataloader = DataLoader( dataset=self.dataset, batch_sampler=self._batch_sampler, collate_fn=self._batch_transforms, num_workers=worker_num, return_list=return_list, use_shared_memory=use_shared_memory) self.loader = iter(self.dataloader) return self def __len__(self): return len(self._batch_sampler) def __iter__(self): return self def __next__(self): try: return next(self.loader) except StopIteration: self.loader = iter(self.dataloader) six.reraise(*sys.exc_info()) def next(self): # python2 compatibility return self.__next__() @register class TrainReader(BaseDataLoader): __shared__ = ['num_classes'] def __init__(self, sample_transforms=[], batch_transforms=[], batch_size=1, shuffle=True, drop_last=True, num_classes=80, collate_batch=True, **kwargs): super(TrainReader, self).__init__(sample_transforms, batch_transforms, batch_size, shuffle, drop_last, num_classes, collate_batch, **kwargs) @register class EvalReader(BaseDataLoader): __shared__ = ['num_classes'] def __init__(self, sample_transforms=[], batch_transforms=[], batch_size=1, shuffle=False, drop_last=True, num_classes=80, **kwargs): super(EvalReader, self).__init__(sample_transforms, batch_transforms, batch_size, shuffle, drop_last, num_classes, **kwargs) @register class TestReader(BaseDataLoader): __shared__ = ['num_classes'] def __init__(self, sample_transforms=[], batch_transforms=[], batch_size=1, shuffle=False, drop_last=False, num_classes=80, **kwargs): super(TestReader, self).__init__(sample_transforms, batch_transforms, batch_size, shuffle, drop_last, num_classes, **kwargs) @register class EvalMOTReader(BaseDataLoader): __shared__ = ['num_classes'] def __init__(self, sample_transforms=[], batch_transforms=[], batch_size=1, shuffle=False, drop_last=False, num_classes=1, **kwargs): super(EvalMOTReader, self).__init__(sample_transforms, batch_transforms, batch_size, shuffle, drop_last, num_classes, **kwargs) @register class TestMOTReader(BaseDataLoader): __shared__ = ['num_classes'] def __init__(self, sample_transforms=[], batch_transforms=[], batch_size=1, shuffle=False, drop_last=False, num_classes=1, **kwargs): super(TestMOTReader, self).__init__(sample_transforms, batch_transforms, batch_size, shuffle, drop_last, num_classes, **kwargs) # For Semi-Supervised Object Detection (SSOD) class Compose_SSOD(object): def __init__(self, base_transforms, weak_aug, strong_aug, num_classes=80): self.base_transforms = base_transforms self.base_transforms_cls = [] for t in self.base_transforms: for k, v in t.items(): op_cls = getattr(transform, k) f = op_cls(**v) if hasattr(f, 'num_classes'): f.num_classes = num_classes self.base_transforms_cls.append(f) self.weak_augs = weak_aug self.weak_augs_cls = [] for t in self.weak_augs: for k, v in t.items(): op_cls = getattr(transform, k) f = op_cls(**v) if hasattr(f, 'num_classes'): f.num_classes = num_classes self.weak_augs_cls.append(f) self.strong_augs = strong_aug self.strong_augs_cls = [] for t in self.strong_augs: for k, v in t.items(): op_cls = getattr(transform, k) f = op_cls(**v) if hasattr(f, 'num_classes'): f.num_classes = num_classes self.strong_augs_cls.append(f) def __call__(self, data): for f in self.base_transforms_cls: try: data = f(data) except Exception as e: stack_info = traceback.format_exc() logger.warning("fail to map sample transform [{}] " "with error: {} and stack:\n{}".format( f, e, str(stack_info))) raise e weak_data = deepcopy(data) strong_data = deepcopy(data) for f in self.weak_augs_cls: try: weak_data = f(weak_data) except Exception as e: stack_info = traceback.format_exc() logger.warning("fail to map weak aug [{}] " "with error: {} and stack:\n{}".format( f, e, str(stack_info))) raise e for f in self.strong_augs_cls: try: strong_data = f(strong_data) except Exception as e: stack_info = traceback.format_exc() logger.warning("fail to map strong aug [{}] " "with error: {} and stack:\n{}".format( f, e, str(stack_info))) raise e weak_data['strong_aug'] = strong_data return weak_data class BatchCompose_SSOD(Compose): def __init__(self, transforms, num_classes=80, collate_batch=True): super(BatchCompose_SSOD, self).__init__(transforms, num_classes) self.collate_batch = collate_batch def __call__(self, data): # split strong_data from data(weak_data) strong_data = [] for sample in data: strong_data.append(sample['strong_aug']) sample.pop('strong_aug') for f in self.transforms_cls: try: data = f(data) strong_data = f(strong_data) except Exception as e: stack_info = traceback.format_exc() logger.warning("fail to map batch transform [{}] " "with error: {} and stack:\n{}".format( f, e, str(stack_info))) raise e # remove keys which is not needed by model extra_key = ['h', 'w', 'flipped'] for k in extra_key: for sample in data: if k in sample: sample.pop(k) for sample in strong_data: if k in sample: sample.pop(k) # batch data, if user-define batch function needed # use user-defined here if self.collate_batch: batch_data = default_collate_fn(data) strong_batch_data = default_collate_fn(strong_data) return batch_data, strong_batch_data else: batch_data = {} for k in data[0].keys(): tmp_data = [] for i in range(len(data)): tmp_data.append(data[i][k]) if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k: tmp_data = np.stack(tmp_data, axis=0) batch_data[k] = tmp_data strong_batch_data = {} for k in strong_data[0].keys(): tmp_data = [] for i in range(len(strong_data)): tmp_data.append(strong_data[i][k]) if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k: tmp_data = np.stack(tmp_data, axis=0) strong_batch_data[k] = tmp_data return batch_data, strong_batch_data class CombineSSODLoader(object): def __init__(self, label_loader, unlabel_loader): self.label_loader = label_loader self.unlabel_loader = unlabel_loader def __iter__(self): while True: try: label_samples = next(self.label_loader_iter) except: self.label_loader_iter = iter(self.label_loader) label_samples = next(self.label_loader_iter) try: unlabel_samples = next(self.unlabel_loader_iter) except: self.unlabel_loader_iter = iter(self.unlabel_loader) unlabel_samples = next(self.unlabel_loader_iter) yield ( label_samples[0], # sup weak label_samples[1], # sup strong unlabel_samples[0], # unsup weak unlabel_samples[1] # unsup strong ) def __call__(self): return self.__iter__() class BaseSemiDataLoader(object): def __init__(self, sample_transforms=[], weak_aug=[], strong_aug=[], sup_batch_transforms=[], unsup_batch_transforms=[], sup_batch_size=1, unsup_batch_size=1, shuffle=True, drop_last=True, num_classes=80, collate_batch=True, use_shared_memory=False, **kwargs): # sup transforms self._sample_transforms_label = Compose_SSOD( sample_transforms, weak_aug, strong_aug, num_classes=num_classes) self._batch_transforms_label = BatchCompose_SSOD( sup_batch_transforms, num_classes, collate_batch) self.batch_size_label = sup_batch_size # unsup transforms self._sample_transforms_unlabel = Compose_SSOD( sample_transforms, weak_aug, strong_aug, num_classes=num_classes) self._batch_transforms_unlabel = BatchCompose_SSOD( unsup_batch_transforms, num_classes, collate_batch) self.batch_size_unlabel = unsup_batch_size # common self.shuffle = shuffle self.drop_last = drop_last self.use_shared_memory = use_shared_memory self.kwargs = kwargs def __call__(self, dataset_label, dataset_unlabel, worker_num, batch_sampler_label=None, batch_sampler_unlabel=None, return_list=False): # sup dataset self.dataset_label = dataset_label self.dataset_label.check_or_download_dataset() self.dataset_label.parse_dataset() self.dataset_label.set_transform(self._sample_transforms_label) self.dataset_label.set_kwargs(**self.kwargs) if batch_sampler_label is None: self._batch_sampler_label = DistributedBatchSampler( self.dataset_label, batch_size=self.batch_size_label, shuffle=self.shuffle, drop_last=self.drop_last) else: self._batch_sampler_label = batch_sampler_label # unsup dataset self.dataset_unlabel = dataset_unlabel self.dataset_unlabel.length = self.dataset_label.__len__() self.dataset_unlabel.check_or_download_dataset() self.dataset_unlabel.parse_dataset() self.dataset_unlabel.set_transform(self._sample_transforms_unlabel) self.dataset_unlabel.set_kwargs(**self.kwargs) if batch_sampler_unlabel is None: self._batch_sampler_unlabel = DistributedBatchSampler( self.dataset_unlabel, batch_size=self.batch_size_unlabel, shuffle=self.shuffle, drop_last=self.drop_last) else: self._batch_sampler_unlabel = batch_sampler_unlabel # DataLoader do not start sub-process in Windows and Mac # system, do not need to use shared memory use_shared_memory = self.use_shared_memory and \ sys.platform not in ['win32', 'darwin'] # check whether shared memory size is bigger than 1G(1024M) if use_shared_memory: shm_size = _get_shared_memory_size_in_M() if shm_size is not None and shm_size < 1024.: logger.warning("Shared memory size is less than 1G, " "disable shared_memory in DataLoader") use_shared_memory = False self.dataloader_label = DataLoader( dataset=self.dataset_label, batch_sampler=self._batch_sampler_label, collate_fn=self._batch_transforms_label, num_workers=worker_num, return_list=return_list, use_shared_memory=use_shared_memory) self.dataloader_unlabel = DataLoader( dataset=self.dataset_unlabel, batch_sampler=self._batch_sampler_unlabel, collate_fn=self._batch_transforms_unlabel, num_workers=worker_num, return_list=return_list, use_shared_memory=use_shared_memory) self.dataloader = CombineSSODLoader(self.dataloader_label, self.dataloader_unlabel) self.loader = iter(self.dataloader) return self def __len__(self): return len(self._batch_sampler_label) def __iter__(self): return self def __next__(self): return next(self.loader) def next(self): # python2 compatibility return self.__next__() @register class SemiTrainReader(BaseSemiDataLoader): __shared__ = ['num_classes'] def __init__(self, sample_transforms=[], weak_aug=[], strong_aug=[], sup_batch_transforms=[], unsup_batch_transforms=[], sup_batch_size=1, unsup_batch_size=1, shuffle=True, drop_last=True, num_classes=80, collate_batch=True, **kwargs): super(SemiTrainReader, self).__init__( sample_transforms, weak_aug, strong_aug, sup_batch_transforms, unsup_batch_transforms, sup_batch_size, unsup_batch_size, shuffle, drop_last, num_classes, collate_batch, **kwargs)