===========================train_params=========================== model_name:slanet python:python3.7 gpu_list:0|0,1 Global.use_gpu:True|True Global.auto_cast:fp32 Global.epoch_num:lite_train_lite_infer=3|whole_train_whole_infer=50 Global.save_model_dir:./output/ Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=128 Global.pretrained_model:./pretrain_models/en_ppstructure_mobile_v2.0_SLANet_train/best_accuracy train_model_name:latest train_infer_img_dir:./ppstructure/docs/table/table.jpg null:null ## trainer:norm_train norm_train:tools/train.py -c test_tipc/configs/slanet/SLANet.yml -o Global.print_batch_step=1 Train.loader.shuffle=false pact_train:null fpgm_train:null distill_train:null null:null null:null ## ===========================eval_params=========================== eval:null null:null ## ===========================infer_params=========================== Global.save_inference_dir:./output/ Global.checkpoints: norm_export:tools/export_model.py -c test_tipc/configs/slanet/SLANet.yml -o quant_export: fpgm_export: distill_export:null export1:null export2:null ## infer_model:./inference/en_ppstructure_mobile_v2.0_SLANet_train infer_export:null infer_quant:False inference:ppstructure/table/predict_table.py --det_model_dir=./inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=./inference/en_ppocr_mobile_v2.0_table_rec_infer --rec_char_dict_path=./ppocr/utils/dict/table_dict.txt --table_char_dict_path=./ppocr/utils/dict/table_structure_dict.txt --image_dir=./ppstructure/docs/table/table.jpg --det_limit_side_len=736 --det_limit_type=min --output ./output/table --use_gpu:True|False --enable_mkldnn:False --cpu_threads:6 --rec_batch_num:1 --use_tensorrt:False --precision:fp32 --table_model_dir: --image_dir:./ppstructure/docs/table/table.jpg null:null --benchmark:False null:null ===========================infer_benchmark_params========================== random_infer_input:[{float32,[3,488,488]}] ===========================train_benchmark_params========================== batch_size:32 fp_items:fp32|fp16 epoch:2 --profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096