// This code is refer from: // https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/csrc/common/cuda/roi_align_rotated_cuda_kernel.cuh #include #include #include #include "paddle/extension.h" #include #define CUDA_1D_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \ i += blockDim.x * gridDim.x) #define THREADS_PER_BLOCK 512 inline int GET_BLOCKS(const int N) { int optimal_block_num = (N + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK; int max_block_num = 4096; return min(optimal_block_num, max_block_num); } #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 600 static __inline__ __device__ double atomicAdd(double *address, double val) { unsigned long long int *address_as_ull = (unsigned long long int *)address; unsigned long long int old = *address_as_ull, assumed; if (val == 0.0) return __longlong_as_double(old); do { assumed = old; old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val + __longlong_as_double(assumed))); } while (assumed != old); return __longlong_as_double(old); } #endif template __device__ T bilinear_interpolate(const T *input, const int height, const int width, T y, T x, const int index /* index for debug only*/) { // deal with cases that inverse elements are out of feature map boundary if (y < -1.0 || y > height || x < -1.0 || x > width) return 0; if (y <= 0) y = 0; if (x <= 0) x = 0; int y_low = (int)y; int x_low = (int)x; int y_high; int x_high; if (y_low >= height - 1) { y_high = y_low = height - 1; y = (T)y_low; } else { y_high = y_low + 1; } if (x_low >= width - 1) { x_high = x_low = width - 1; x = (T)x_low; } else { x_high = x_low + 1; } T ly = y - y_low; T lx = x - x_low; T hy = 1. - ly, hx = 1. - lx; // do bilinear interpolation T v1 = input[y_low * width + x_low]; T v2 = input[y_low * width + x_high]; T v3 = input[y_high * width + x_low]; T v4 = input[y_high * width + x_high]; T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); return val; } template __device__ void bilinear_interpolate_gradient(const int height, const int width, T y, T x, T &w1, T &w2, T &w3, T &w4, int &x_low, int &x_high, int &y_low, int &y_high, const int index /* index for debug only*/) { // deal with cases that inverse elements are out of feature map boundary if (y < -1.0 || y > height || x < -1.0 || x > width) { // empty w1 = w2 = w3 = w4 = 0.; x_low = x_high = y_low = y_high = -1; return; } if (y <= 0) y = 0; if (x <= 0) x = 0; y_low = (int)y; x_low = (int)x; if (y_low >= height - 1) { y_high = y_low = height - 1; y = (T)y_low; } else { y_high = y_low + 1; } if (x_low >= width - 1) { x_high = x_low = width - 1; x = (T)x_low; } else { x_high = x_low + 1; } T ly = y - y_low; T lx = x - x_low; T hy = 1. - ly, hx = 1. - lx; // reference in forward // T v1 = input[y_low * width + x_low]; // T v2 = input[y_low * width + x_high]; // T v3 = input[y_high * width + x_low]; // T v4 = input[y_high * width + x_high]; // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; return; } /*** Forward ***/ template __global__ void roi_align_rotated_cuda_forward_kernel( const int nthreads, const scalar_t *bottom_data, const scalar_t *bottom_rois, const scalar_t spatial_scale, const int sample_num, const bool aligned, const bool clockwise, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, scalar_t *top_data) { CUDA_1D_KERNEL_LOOP(index, nthreads) { // (n, c, ph, pw) is an element in the pooled output int pw = index % pooled_width; int ph = (index / pooled_width) % pooled_height; int c = (index / pooled_width / pooled_height) % channels; int n = index / pooled_width / pooled_height / channels; const scalar_t *offset_bottom_rois = bottom_rois + n * 6; int roi_batch_ind = offset_bottom_rois[0]; // Do not using rounding; this implementation detail is critical scalar_t offset = aligned ? (scalar_t)0.5 : (scalar_t)0.0; scalar_t roi_center_w = offset_bottom_rois[1] * spatial_scale - offset; scalar_t roi_center_h = offset_bottom_rois[2] * spatial_scale - offset; scalar_t roi_width = offset_bottom_rois[3] * spatial_scale; scalar_t roi_height = offset_bottom_rois[4] * spatial_scale; // scalar_t theta = offset_bottom_rois[5] * M_PI / 180.0; scalar_t theta = offset_bottom_rois[5]; if (clockwise) { theta = -theta; // If clockwise, the angle needs to be reversed. } if (!aligned) { // for backward-compatibility only // Force malformed ROIs to be 1x1 roi_width = max(roi_width, (scalar_t)1.); roi_height = max(roi_height, (scalar_t)1.); } scalar_t bin_size_h = static_cast(roi_height) / static_cast(pooled_height); scalar_t bin_size_w = static_cast(roi_width) / static_cast(pooled_width); const scalar_t *offset_bottom_data = bottom_data + (roi_batch_ind * channels + c) * height * width; // We use roi_bin_grid to sample the grid and mimic integral int roi_bin_grid_h = (sample_num > 0) ? sample_num : ceilf(roi_height / pooled_height); // e.g., = 2 int roi_bin_grid_w = (sample_num > 0) ? sample_num : ceilf(roi_width / pooled_width); // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y). // Appropriate translation needs to be applied after. scalar_t roi_start_h = -roi_height / 2.0; scalar_t roi_start_w = -roi_width / 2.0; scalar_t cosscalar_theta = cos(theta); scalar_t sinscalar_theta = sin(theta); // We do average (integral) pooling inside a bin const scalar_t count = max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4 scalar_t output_val = 0.; for (int iy = 0; iy < roi_bin_grid_h; iy++) { // e.g., iy = 0, 1 const scalar_t yy = roi_start_h + ph * bin_size_h + static_cast(iy + .5f) * bin_size_h / static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5 for (int ix = 0; ix < roi_bin_grid_w; ix++) { const scalar_t xx = roi_start_w + pw * bin_size_w + static_cast(ix + .5f) * bin_size_w / static_cast(roi_bin_grid_w); // Rotate by theta (counterclockwise) around the center and translate scalar_t y = yy * cosscalar_theta - xx * sinscalar_theta + roi_center_h; scalar_t x = yy * sinscalar_theta + xx * cosscalar_theta + roi_center_w; scalar_t val = bilinear_interpolate( offset_bottom_data, height, width, y, x, index); output_val += val; } } output_val /= count; top_data[index] = output_val; } } /*** Backward ***/ template __global__ void roi_align_rotated_backward_cuda_kernel( const int nthreads, const scalar_t *top_diff, const scalar_t *bottom_rois, const scalar_t spatial_scale, const int sample_num, const bool aligned, const bool clockwise, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, scalar_t *bottom_diff) { CUDA_1D_KERNEL_LOOP(index, nthreads) { // (n, c, ph, pw) is an element in the pooled output int pw = index % pooled_width; int ph = (index / pooled_width) % pooled_height; int c = (index / pooled_width / pooled_height) % channels; int n = index / pooled_width / pooled_height / channels; const scalar_t *offset_bottom_rois = bottom_rois + n * 6; int roi_batch_ind = offset_bottom_rois[0]; // Do not round scalar_t offset = aligned ? (scalar_t)0.5 : (scalar_t)0.0; scalar_t roi_center_w = offset_bottom_rois[1] * spatial_scale - offset; scalar_t roi_center_h = offset_bottom_rois[2] * spatial_scale - offset; scalar_t roi_width = offset_bottom_rois[3] * spatial_scale; scalar_t roi_height = offset_bottom_rois[4] * spatial_scale; // scalar_t theta = offset_bottom_rois[5] * M_PI / 180.0; scalar_t theta = offset_bottom_rois[5]; if (clockwise) { theta = -theta; // If clockwise, the angle needs to be reversed. } if (!aligned) { // for backward-compatibility only // Force malformed ROIs to be 1x1 roi_width = max(roi_width, (scalar_t)1.); roi_height = max(roi_height, (scalar_t)1.); } scalar_t bin_size_h = static_cast(roi_height) / static_cast(pooled_height); scalar_t bin_size_w = static_cast(roi_width) / static_cast(pooled_width); scalar_t *offset_bottom_diff = bottom_diff + (roi_batch_ind * channels + c) * height * width; int top_offset = (n * channels + c) * pooled_height * pooled_width; const scalar_t *offset_top_diff = top_diff + top_offset; const scalar_t top_diff_this_bin = offset_top_diff[ph * pooled_width + pw]; // We use roi_bin_grid to sample the grid and mimic integral int roi_bin_grid_h = (sample_num > 0) ? sample_num : ceilf(roi_height / pooled_height); // e.g., = 2 int roi_bin_grid_w = (sample_num > 0) ? sample_num : ceilf(roi_width / pooled_width); // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y). // Appropriate translation needs to be applied after. scalar_t roi_start_h = -roi_height / 2.0; scalar_t roi_start_w = -roi_width / 2.0; scalar_t cosTheta = cos(theta); scalar_t sinTheta = sin(theta); // We do average (integral) pooling inside a bin const scalar_t count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4 for (int iy = 0; iy < roi_bin_grid_h; iy++) { // e.g., iy = 0, 1 const scalar_t yy = roi_start_h + ph * bin_size_h + static_cast(iy + .5f) * bin_size_h / static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5 for (int ix = 0; ix < roi_bin_grid_w; ix++) { const scalar_t xx = roi_start_w + pw * bin_size_w + static_cast(ix + .5f) * bin_size_w / static_cast(roi_bin_grid_w); // Rotate by theta around the center and translate scalar_t y = yy * cosTheta - xx * sinTheta + roi_center_h; scalar_t x = yy * sinTheta + xx * cosTheta + roi_center_w; scalar_t w1, w2, w3, w4; int x_low, x_high, y_low, y_high; bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, w4, x_low, x_high, y_low, y_high, index); scalar_t g1 = top_diff_this_bin * w1 / count; scalar_t g2 = top_diff_this_bin * w2 / count; scalar_t g3 = top_diff_this_bin * w3 / count; scalar_t g4 = top_diff_this_bin * w4 / count; if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) { atomicAdd(offset_bottom_diff + y_low * width + x_low, g1); atomicAdd(offset_bottom_diff + y_low * width + x_high, g2); atomicAdd(offset_bottom_diff + y_high * width + x_low, g3); atomicAdd(offset_bottom_diff + y_high * width + x_high, g4); } // if } // ix } // iy } // CUDA_1D_KERNEL_LOOP } // RoIAlignBackward std::vector RoIAlignRotatedCUDAForward(const paddle::Tensor &input, const paddle::Tensor &rois, int aligned_height, int aligned_width, float spatial_scale, int sampling_ratio, bool aligned, bool clockwise) { auto num_rois = rois.shape()[0]; auto channels = input.shape()[1]; auto height = input.shape()[2]; auto width = input.shape()[3]; auto output = paddle::empty({num_rois, channels, aligned_height, aligned_width}, input.type(), paddle::GPUPlace()); auto output_size = output.numel(); PD_DISPATCH_FLOATING_TYPES( input.type(), "roi_align_rotated_cuda_forward_kernel", ([&] { roi_align_rotated_cuda_forward_kernel< data_t><<>>( output_size, input.data(), rois.data(), static_cast(spatial_scale), sampling_ratio, aligned, clockwise, channels, height, width, aligned_height, aligned_width, output.data()); })); return {output}; } std::vector RoIAlignRotatedCUDABackward( const paddle::Tensor &input, const paddle::Tensor &rois, const paddle::Tensor &grad_output, int aligned_height, int aligned_width, float spatial_scale, int sampling_ratio, bool aligned, bool clockwise) { auto num_rois = rois.shape()[0]; auto batch_size = input.shape()[0]; auto channels = input.shape()[1]; auto height = input.shape()[2]; auto width = input.shape()[3]; auto grad_input = paddle::full({batch_size, channels, height, width}, 0.0, input.type(), paddle::GPUPlace()); const int output_size = num_rois * aligned_height * aligned_width * channels; PD_DISPATCH_FLOATING_TYPES( grad_output.type(), "roi_align_rotated_backward_cuda_kernel", ([&] { roi_align_rotated_backward_cuda_kernel< data_t><<>>( output_size, grad_output.data(), rois.data(), spatial_scale, sampling_ratio, aligned, clockwise, channels, height, width, aligned_height, aligned_width, grad_input.data()); })); return {grad_input}; }