import numpy as np import tensorflow as tf # Load the TFLite model and allocate tensors interpreter = tf.lite.Interpreter(model_path="torch_script_model/doc_clean.tflite") interpreter.allocate_tensors() # Get input and output tensors input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Test the model on random input data input_shape = input_details[0]['shape'] input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32) interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() # get_tensor() returns a copy of the tensor data # use tensor() in order to get a pointer to the tensor output_data = interpreter.get_tensor(output_details[0]['index']) print(output_data)