architecture: FasterRCNN pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams FasterRCNN: backbone: ResNet neck: FPN rpn_head: RPNHead bbox_head: BBoxHead # post process bbox_post_process: BBoxPostProcess ResNet: # index 0 stands for res2 depth: 50 norm_type: bn variant: d freeze_at: 0 return_idx: [0,1,2,3] num_stages: 4 dcn_v2_stages: [1,2,3] lr_mult_list: [0.05, 0.05, 0.1, 0.15] FPN: in_channels: [256, 512, 1024, 2048] out_channel: 64 RPNHead: anchor_generator: aspect_ratios: [0.5, 1.0, 2.0] anchor_sizes: [[32], [64], [128], [256], [512]] strides: [4, 8, 16, 32, 64] rpn_target_assign: batch_size_per_im: 256 fg_fraction: 0.5 negative_overlap: 0.3 positive_overlap: 0.7 use_random: True train_proposal: min_size: 0.0 nms_thresh: 0.7 pre_nms_top_n: 2000 post_nms_top_n: 2000 topk_after_collect: True test_proposal: min_size: 0.0 nms_thresh: 0.7 pre_nms_top_n: 500 post_nms_top_n: 300 BBoxHead: head: TwoFCHead roi_extractor: resolution: 7 sampling_ratio: 0 aligned: True bbox_assigner: BBoxLibraAssigner bbox_loss: DIouLoss TwoFCHead: out_channel: 1024 BBoxLibraAssigner: batch_size_per_im: 512 bg_thresh: 0.5 fg_thresh: 0.5 fg_fraction: 0.25 use_random: True DIouLoss: loss_weight: 10.0 use_complete_iou_loss: true BBoxPostProcess: decode: RCNNBox nms: name: MultiClassNMS keep_top_k: 100 score_threshold: 0.05 nms_threshold: 0.5