# ConvNeXt (A ConvNet for the 2020s) ## 模型库 ### ConvNeXt on COCO | 网络网络 | 输入尺寸 | 图片数/GPU | 学习率策略 | mAPval
0.5:0.95 | mAPval
0.5 | Params(M) | FLOPs(G) | 下载链接 | 配置文件 | | :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: | | PP-YOLOE-ConvNeXt-tiny | 640 | 16 | 36e | 44.6 | 63.3 | 33.04 | 13.87 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_convnext_tiny_36e_coco.pdparams) | [配置文件](./ppyoloe_convnext_tiny_36e_coco.yml) | | YOLOX-ConvNeXt-s | 640 | 8 | 36e | 44.6 | 65.3 | 36.20 | 27.52 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_convnext_s_36e_coco.pdparams) | [配置文件](./yolox_convnext_s_36e_coco.yml) | ## Citations ``` @Article{liu2022convnet, author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2022}, } ```