===========================train_params=========================== model_name:table_master python:python3.7 gpu_list:0|0,1 Global.use_gpu:True|True Global.auto_cast:fp32 Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=17 Global.save_model_dir:./output/ Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=4 Global.pretrained_model:./pretrain_models/table_structure_tablemaster_train/best_accuracy train_model_name:latest train_infer_img_dir:./ppstructure/docs/table/table.jpg null:null ## trainer:norm_train norm_train:tools/train.py -c test_tipc/configs/table_master/table_master.yml -o Global.print_batch_step=10 pact_train:null fpgm_train:null distill_train:null null:null null:null ## ===========================eval_params=========================== eval:null null:null ## ===========================infer_params=========================== Global.save_inference_dir:./output/ Global.checkpoints: norm_export:tools/export_model.py -c test_tipc/configs/table_master/table_master.yml -o quant_export: fpgm_export: distill_export:null export1:null export2:null ## infer_model:null infer_export:null infer_quant:False inference:ppstructure/table/predict_structure.py --table_char_dict_path=./ppocr/utils/dict/table_master_structure_dict.txt --output ./output/table --table_algorithm=TableMaster --table_max_len=480 --use_gpu:True --enable_mkldnn:False --cpu_threads:6 --rec_batch_num:1 --use_tensorrt:False --precision:fp32 --table_model_dir: --image_dir:./ppstructure/docs/table/table.jpg null:null --benchmark:False null:null ===========================infer_benchmark_params========================== random_infer_input:[{float32,[3,480,480]}]