===========================train_params=========================== model_name:rec_resnet_rfl python:python3.7 gpu_list:0|0,1 Global.use_gpu:True|True Global.auto_cast:null Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300 Global.save_model_dir:./output/ Train.loader.batch_size_per_card:lite_train_lite_infer=16|whole_train_whole_infer=64 Global.pretrained_model:null train_model_name:latest train_infer_img_dir:./inference/rec_inference null:null ## trainer:norm_train norm_train:tools/train.py -c test_tipc/configs/rec_resnet_rfl/rec_resnet_rfl.yml -o pact_train:null fpgm_train:null distill_train:null null:null null:null ## ===========================eval_params=========================== eval:tools/eval.py -c test_tipc/configs/rec_resnet_rfl/rec_resnet_rfl.yml -o null:null ## ===========================infer_params=========================== Global.save_inference_dir:./output/ Global.checkpoints: norm_export:tools/export_model.py -c test_tipc/configs/rec_resnet_rfl/rec_resnet_rfl.yml -o quant_export:null fpgm_export:null distill_export:null export1:null export2:null ## train_model:./inference/rec_resnet_rfl_train/best_accuracy infer_export:tools/export_model.py -c test_tipc/configs/rec_resnet_rfl/rec_resnet_rfl.yml -o infer_quant:False inference:tools/infer/predict_rec.py --rec_image_shape="1,32,100" --rec_algorithm="RFL" --min_subgraph_size=5 --use_gpu:True|False --enable_mkldnn:False --cpu_threads:6 --rec_batch_num:1 --use_tensorrt:False --precision:fp32 --rec_model_dir: --image_dir:./inference/rec_inference --save_log_path:./test/output/ --benchmark:True null:null ===========================infer_benchmark_params========================== random_infer_input:[{float32,[1,32,100]}]