# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is refer from: https://github.com/open-mmlab/mmocr/blob/main/mmocr/datasets/pipelines/textdet_targets/fcenet_targets.py """ import cv2 import numpy as np from numpy.fft import fft from numpy.linalg import norm import sys def vector_slope(vec): assert len(vec) == 2 return abs(vec[1] / (vec[0] + 1e-8)) class FCENetTargets: """Generate the ground truth targets of FCENet: Fourier Contour Embedding for Arbitrary-Shaped Text Detection. [https://arxiv.org/abs/2104.10442] Args: fourier_degree (int): The maximum Fourier transform degree k. resample_step (float): The step size for resampling the text center line (TCL). It's better not to exceed half of the minimum width. center_region_shrink_ratio (float): The shrink ratio of text center region. level_size_divisors (tuple(int)): The downsample ratio on each level. level_proportion_range (tuple(tuple(int))): The range of text sizes assigned to each level. """ def __init__(self, fourier_degree=5, resample_step=4.0, center_region_shrink_ratio=0.3, level_size_divisors=(8, 16, 32), level_proportion_range=((0, 0.25), (0.2, 0.65), (0.55, 1.0)), orientation_thr=2.0, **kwargs): super().__init__() assert isinstance(level_size_divisors, tuple) assert isinstance(level_proportion_range, tuple) assert len(level_size_divisors) == len(level_proportion_range) self.fourier_degree = fourier_degree self.resample_step = resample_step self.center_region_shrink_ratio = center_region_shrink_ratio self.level_size_divisors = level_size_divisors self.level_proportion_range = level_proportion_range self.orientation_thr = orientation_thr def vector_angle(self, vec1, vec2): if vec1.ndim > 1: unit_vec1 = vec1 / (norm(vec1, axis=-1) + 1e-8).reshape((-1, 1)) else: unit_vec1 = vec1 / (norm(vec1, axis=-1) + 1e-8) if vec2.ndim > 1: unit_vec2 = vec2 / (norm(vec2, axis=-1) + 1e-8).reshape((-1, 1)) else: unit_vec2 = vec2 / (norm(vec2, axis=-1) + 1e-8) return np.arccos( np.clip( np.sum(unit_vec1 * unit_vec2, axis=-1), -1.0, 1.0)) def resample_line(self, line, n): """Resample n points on a line. Args: line (ndarray): The points composing a line. n (int): The resampled points number. Returns: resampled_line (ndarray): The points composing the resampled line. """ assert line.ndim == 2 assert line.shape[0] >= 2 assert line.shape[1] == 2 assert isinstance(n, int) assert n > 0 length_list = [ norm(line[i + 1] - line[i]) for i in range(len(line) - 1) ] total_length = sum(length_list) length_cumsum = np.cumsum([0.0] + length_list) delta_length = total_length / (float(n) + 1e-8) current_edge_ind = 0 resampled_line = [line[0]] for i in range(1, n): current_line_len = i * delta_length while current_edge_ind + 1 < len( length_cumsum) and current_line_len >= length_cumsum[ current_edge_ind + 1]: current_edge_ind += 1 current_edge_end_shift = current_line_len - length_cumsum[ current_edge_ind] if current_edge_ind >= len(length_list): break end_shift_ratio = current_edge_end_shift / length_list[ current_edge_ind] current_point = line[current_edge_ind] + (line[current_edge_ind + 1] - line[current_edge_ind] ) * end_shift_ratio resampled_line.append(current_point) resampled_line.append(line[-1]) resampled_line = np.array(resampled_line) return resampled_line def reorder_poly_edge(self, points): """Get the respective points composing head edge, tail edge, top sideline and bottom sideline. Args: points (ndarray): The points composing a text polygon. Returns: head_edge (ndarray): The two points composing the head edge of text polygon. tail_edge (ndarray): The two points composing the tail edge of text polygon. top_sideline (ndarray): The points composing top curved sideline of text polygon. bot_sideline (ndarray): The points composing bottom curved sideline of text polygon. """ assert points.ndim == 2 assert points.shape[0] >= 4 assert points.shape[1] == 2 head_inds, tail_inds = self.find_head_tail(points, self.orientation_thr) head_edge, tail_edge = points[head_inds], points[tail_inds] pad_points = np.vstack([points, points]) if tail_inds[1] < 1: tail_inds[1] = len(points) sideline1 = pad_points[head_inds[1]:tail_inds[1]] sideline2 = pad_points[tail_inds[1]:(head_inds[1] + len(points))] sideline_mean_shift = np.mean( sideline1, axis=0) - np.mean( sideline2, axis=0) if sideline_mean_shift[1] > 0: top_sideline, bot_sideline = sideline2, sideline1 else: top_sideline, bot_sideline = sideline1, sideline2 return head_edge, tail_edge, top_sideline, bot_sideline def find_head_tail(self, points, orientation_thr): """Find the head edge and tail edge of a text polygon. Args: points (ndarray): The points composing a text polygon. orientation_thr (float): The threshold for distinguishing between head edge and tail edge among the horizontal and vertical edges of a quadrangle. Returns: head_inds (list): The indexes of two points composing head edge. tail_inds (list): The indexes of two points composing tail edge. """ assert points.ndim == 2 assert points.shape[0] >= 4 assert points.shape[1] == 2 assert isinstance(orientation_thr, float) if len(points) > 4: pad_points = np.vstack([points, points[0]]) edge_vec = pad_points[1:] - pad_points[:-1] theta_sum = [] adjacent_vec_theta = [] for i, edge_vec1 in enumerate(edge_vec): adjacent_ind = [x % len(edge_vec) for x in [i - 1, i + 1]] adjacent_edge_vec = edge_vec[adjacent_ind] temp_theta_sum = np.sum( self.vector_angle(edge_vec1, adjacent_edge_vec)) temp_adjacent_theta = self.vector_angle(adjacent_edge_vec[0], adjacent_edge_vec[1]) theta_sum.append(temp_theta_sum) adjacent_vec_theta.append(temp_adjacent_theta) theta_sum_score = np.array(theta_sum) / np.pi adjacent_theta_score = np.array(adjacent_vec_theta) / np.pi poly_center = np.mean(points, axis=0) edge_dist = np.maximum( norm( pad_points[1:] - poly_center, axis=-1), norm( pad_points[:-1] - poly_center, axis=-1)) dist_score = edge_dist / np.max(edge_dist) position_score = np.zeros(len(edge_vec)) score = 0.5 * theta_sum_score + 0.15 * adjacent_theta_score score += 0.35 * dist_score if len(points) % 2 == 0: position_score[(len(score) // 2 - 1)] += 1 position_score[-1] += 1 score += 0.1 * position_score pad_score = np.concatenate([score, score]) score_matrix = np.zeros((len(score), len(score) - 3)) x = np.arange(len(score) - 3) / float(len(score) - 4) gaussian = 1. / (np.sqrt(2. * np.pi) * 0.5) * np.exp(-np.power( (x - 0.5) / 0.5, 2.) / 2) gaussian = gaussian / np.max(gaussian) for i in range(len(score)): score_matrix[i, :] = score[i] + pad_score[(i + 2):(i + len( score) - 1)] * gaussian * 0.3 head_start, tail_increment = np.unravel_index(score_matrix.argmax(), score_matrix.shape) tail_start = (head_start + tail_increment + 2) % len(points) head_end = (head_start + 1) % len(points) tail_end = (tail_start + 1) % len(points) if head_end > tail_end: head_start, tail_start = tail_start, head_start head_end, tail_end = tail_end, head_end head_inds = [head_start, head_end] tail_inds = [tail_start, tail_end] else: if vector_slope(points[1] - points[0]) + vector_slope(points[ 3] - points[2]) < vector_slope(points[2] - points[ 1]) + vector_slope(points[0] - points[3]): horizontal_edge_inds = [[0, 1], [2, 3]] vertical_edge_inds = [[3, 0], [1, 2]] else: horizontal_edge_inds = [[3, 0], [1, 2]] vertical_edge_inds = [[0, 1], [2, 3]] vertical_len_sum = norm(points[vertical_edge_inds[0][0]] - points[ vertical_edge_inds[0][1]]) + norm(points[vertical_edge_inds[1][ 0]] - points[vertical_edge_inds[1][1]]) horizontal_len_sum = norm(points[horizontal_edge_inds[0][ 0]] - points[horizontal_edge_inds[0][1]]) + norm(points[ horizontal_edge_inds[1][0]] - points[horizontal_edge_inds[1] [1]]) if vertical_len_sum > horizontal_len_sum * orientation_thr: head_inds = horizontal_edge_inds[0] tail_inds = horizontal_edge_inds[1] else: head_inds = vertical_edge_inds[0] tail_inds = vertical_edge_inds[1] return head_inds, tail_inds def resample_sidelines(self, sideline1, sideline2, resample_step): """Resample two sidelines to be of the same points number according to step size. Args: sideline1 (ndarray): The points composing a sideline of a text polygon. sideline2 (ndarray): The points composing another sideline of a text polygon. resample_step (float): The resampled step size. Returns: resampled_line1 (ndarray): The resampled line 1. resampled_line2 (ndarray): The resampled line 2. """ assert sideline1.ndim == sideline2.ndim == 2 assert sideline1.shape[1] == sideline2.shape[1] == 2 assert sideline1.shape[0] >= 2 assert sideline2.shape[0] >= 2 assert isinstance(resample_step, float) length1 = sum([ norm(sideline1[i + 1] - sideline1[i]) for i in range(len(sideline1) - 1) ]) length2 = sum([ norm(sideline2[i + 1] - sideline2[i]) for i in range(len(sideline2) - 1) ]) total_length = (length1 + length2) / 2 resample_point_num = max(int(float(total_length) / resample_step), 1) resampled_line1 = self.resample_line(sideline1, resample_point_num) resampled_line2 = self.resample_line(sideline2, resample_point_num) return resampled_line1, resampled_line2 def generate_center_region_mask(self, img_size, text_polys): """Generate text center region mask. Args: img_size (tuple): The image size of (height, width). text_polys (list[list[ndarray]]): The list of text polygons. Returns: center_region_mask (ndarray): The text center region mask. """ assert isinstance(img_size, tuple) # assert check_argument.is_2dlist(text_polys) h, w = img_size center_region_mask = np.zeros((h, w), np.uint8) center_region_boxes = [] for poly in text_polys: # assert len(poly) == 1 polygon_points = poly.reshape(-1, 2) _, _, top_line, bot_line = self.reorder_poly_edge(polygon_points) resampled_top_line, resampled_bot_line = self.resample_sidelines( top_line, bot_line, self.resample_step) resampled_bot_line = resampled_bot_line[::-1] if len(resampled_top_line) != len(resampled_bot_line): continue center_line = (resampled_top_line + resampled_bot_line) / 2 line_head_shrink_len = norm(resampled_top_line[0] - resampled_bot_line[0]) / 4.0 line_tail_shrink_len = norm(resampled_top_line[-1] - resampled_bot_line[-1]) / 4.0 head_shrink_num = int(line_head_shrink_len // self.resample_step) tail_shrink_num = int(line_tail_shrink_len // self.resample_step) if len(center_line) > head_shrink_num + tail_shrink_num + 2: center_line = center_line[head_shrink_num:len(center_line) - tail_shrink_num] resampled_top_line = resampled_top_line[head_shrink_num:len( resampled_top_line) - tail_shrink_num] resampled_bot_line = resampled_bot_line[head_shrink_num:len( resampled_bot_line) - tail_shrink_num] for i in range(0, len(center_line) - 1): tl = center_line[i] + (resampled_top_line[i] - center_line[i] ) * self.center_region_shrink_ratio tr = center_line[i + 1] + (resampled_top_line[i + 1] - center_line[i + 1] ) * self.center_region_shrink_ratio br = center_line[i + 1] + (resampled_bot_line[i + 1] - center_line[i + 1] ) * self.center_region_shrink_ratio bl = center_line[i] + (resampled_bot_line[i] - center_line[i] ) * self.center_region_shrink_ratio current_center_box = np.vstack([tl, tr, br, bl]).astype(np.int32) center_region_boxes.append(current_center_box) cv2.fillPoly(center_region_mask, center_region_boxes, 1) return center_region_mask def resample_polygon(self, polygon, n=400): """Resample one polygon with n points on its boundary. Args: polygon (list[float]): The input polygon. n (int): The number of resampled points. Returns: resampled_polygon (list[float]): The resampled polygon. """ length = [] for i in range(len(polygon)): p1 = polygon[i] if i == len(polygon) - 1: p2 = polygon[0] else: p2 = polygon[i + 1] length.append(((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)**0.5) total_length = sum(length) n_on_each_line = (np.array(length) / (total_length + 1e-8)) * n n_on_each_line = n_on_each_line.astype(np.int32) new_polygon = [] for i in range(len(polygon)): num = n_on_each_line[i] p1 = polygon[i] if i == len(polygon) - 1: p2 = polygon[0] else: p2 = polygon[i + 1] if num == 0: continue dxdy = (p2 - p1) / num for j in range(num): point = p1 + dxdy * j new_polygon.append(point) return np.array(new_polygon) def normalize_polygon(self, polygon): """Normalize one polygon so that its start point is at right most. Args: polygon (list[float]): The origin polygon. Returns: new_polygon (lost[float]): The polygon with start point at right. """ temp_polygon = polygon - polygon.mean(axis=0) x = np.abs(temp_polygon[:, 0]) y = temp_polygon[:, 1] index_x = np.argsort(x) index_y = np.argmin(y[index_x[:8]]) index = index_x[index_y] new_polygon = np.concatenate([polygon[index:], polygon[:index]]) return new_polygon def poly2fourier(self, polygon, fourier_degree): """Perform Fourier transformation to generate Fourier coefficients ck from polygon. Args: polygon (ndarray): An input polygon. fourier_degree (int): The maximum Fourier degree K. Returns: c (ndarray(complex)): Fourier coefficients. """ points = polygon[:, 0] + polygon[:, 1] * 1j c_fft = fft(points) / len(points) c = np.hstack((c_fft[-fourier_degree:], c_fft[:fourier_degree + 1])) return c def clockwise(self, c, fourier_degree): """Make sure the polygon reconstructed from Fourier coefficients c in the clockwise direction. Args: polygon (list[float]): The origin polygon. Returns: new_polygon (lost[float]): The polygon in clockwise point order. """ if np.abs(c[fourier_degree + 1]) > np.abs(c[fourier_degree - 1]): return c elif np.abs(c[fourier_degree + 1]) < np.abs(c[fourier_degree - 1]): return c[::-1] else: if np.abs(c[fourier_degree + 2]) > np.abs(c[fourier_degree - 2]): return c else: return c[::-1] def cal_fourier_signature(self, polygon, fourier_degree): """Calculate Fourier signature from input polygon. Args: polygon (ndarray): The input polygon. fourier_degree (int): The maximum Fourier degree K. Returns: fourier_signature (ndarray): An array shaped (2k+1, 2) containing real part and image part of 2k+1 Fourier coefficients. """ resampled_polygon = self.resample_polygon(polygon) resampled_polygon = self.normalize_polygon(resampled_polygon) fourier_coeff = self.poly2fourier(resampled_polygon, fourier_degree) fourier_coeff = self.clockwise(fourier_coeff, fourier_degree) real_part = np.real(fourier_coeff).reshape((-1, 1)) image_part = np.imag(fourier_coeff).reshape((-1, 1)) fourier_signature = np.hstack([real_part, image_part]) return fourier_signature def generate_fourier_maps(self, img_size, text_polys): """Generate Fourier coefficient maps. Args: img_size (tuple): The image size of (height, width). text_polys (list[list[ndarray]]): The list of text polygons. Returns: fourier_real_map (ndarray): The Fourier coefficient real part maps. fourier_image_map (ndarray): The Fourier coefficient image part maps. """ assert isinstance(img_size, tuple) h, w = img_size k = self.fourier_degree real_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32) imag_map = np.zeros((k * 2 + 1, h, w), dtype=np.float32) for poly in text_polys: mask = np.zeros((h, w), dtype=np.uint8) polygon = np.array(poly).reshape((1, -1, 2)) cv2.fillPoly(mask, polygon.astype(np.int32), 1) fourier_coeff = self.cal_fourier_signature(polygon[0], k) for i in range(-k, k + 1): if i != 0: real_map[i + k, :, :] = mask * fourier_coeff[i + k, 0] + ( 1 - mask) * real_map[i + k, :, :] imag_map[i + k, :, :] = mask * fourier_coeff[i + k, 1] + ( 1 - mask) * imag_map[i + k, :, :] else: yx = np.argwhere(mask > 0.5) k_ind = np.ones((len(yx)), dtype=np.int64) * k y, x = yx[:, 0], yx[:, 1] real_map[k_ind, y, x] = fourier_coeff[k, 0] - x imag_map[k_ind, y, x] = fourier_coeff[k, 1] - y return real_map, imag_map def generate_text_region_mask(self, img_size, text_polys): """Generate text center region mask and geometry attribute maps. Args: img_size (tuple): The image size (height, width). text_polys (list[list[ndarray]]): The list of text polygons. Returns: text_region_mask (ndarray): The text region mask. """ assert isinstance(img_size, tuple) h, w = img_size text_region_mask = np.zeros((h, w), dtype=np.uint8) for poly in text_polys: polygon = np.array(poly, dtype=np.int32).reshape((1, -1, 2)) cv2.fillPoly(text_region_mask, polygon, 1) return text_region_mask def generate_effective_mask(self, mask_size: tuple, polygons_ignore): """Generate effective mask by setting the ineffective regions to 0 and effective regions to 1. Args: mask_size (tuple): The mask size. polygons_ignore (list[[ndarray]]: The list of ignored text polygons. Returns: mask (ndarray): The effective mask of (height, width). """ mask = np.ones(mask_size, dtype=np.uint8) for poly in polygons_ignore: instance = poly.reshape(-1, 2).astype(np.int32).reshape(1, -1, 2) cv2.fillPoly(mask, instance, 0) return mask def generate_level_targets(self, img_size, text_polys, ignore_polys): """Generate ground truth target on each level. Args: img_size (list[int]): Shape of input image. text_polys (list[list[ndarray]]): A list of ground truth polygons. ignore_polys (list[list[ndarray]]): A list of ignored polygons. Returns: level_maps (list(ndarray)): A list of ground target on each level. """ h, w = img_size lv_size_divs = self.level_size_divisors lv_proportion_range = self.level_proportion_range lv_text_polys = [[] for i in range(len(lv_size_divs))] lv_ignore_polys = [[] for i in range(len(lv_size_divs))] level_maps = [] for poly in text_polys: polygon = np.array(poly, dtype=np.int32).reshape((1, -1, 2)) _, _, box_w, box_h = cv2.boundingRect(polygon) proportion = max(box_h, box_w) / (h + 1e-8) for ind, proportion_range in enumerate(lv_proportion_range): if proportion_range[0] < proportion < proportion_range[1]: lv_text_polys[ind].append(poly / lv_size_divs[ind]) for ignore_poly in ignore_polys: polygon = np.array(ignore_poly, dtype=np.int32).reshape((1, -1, 2)) _, _, box_w, box_h = cv2.boundingRect(polygon) proportion = max(box_h, box_w) / (h + 1e-8) for ind, proportion_range in enumerate(lv_proportion_range): if proportion_range[0] < proportion < proportion_range[1]: lv_ignore_polys[ind].append(ignore_poly / lv_size_divs[ind]) for ind, size_divisor in enumerate(lv_size_divs): current_level_maps = [] level_img_size = (h // size_divisor, w // size_divisor) text_region = self.generate_text_region_mask( level_img_size, lv_text_polys[ind])[None] current_level_maps.append(text_region) center_region = self.generate_center_region_mask( level_img_size, lv_text_polys[ind])[None] current_level_maps.append(center_region) effective_mask = self.generate_effective_mask( level_img_size, lv_ignore_polys[ind])[None] current_level_maps.append(effective_mask) fourier_real_map, fourier_image_maps = self.generate_fourier_maps( level_img_size, lv_text_polys[ind]) current_level_maps.append(fourier_real_map) current_level_maps.append(fourier_image_maps) level_maps.append(np.concatenate(current_level_maps)) return level_maps def generate_targets(self, results): """Generate the ground truth targets for FCENet. Args: results (dict): The input result dictionary. Returns: results (dict): The output result dictionary. """ assert isinstance(results, dict) image = results['image'] polygons = results['polys'] ignore_tags = results['ignore_tags'] h, w, _ = image.shape polygon_masks = [] polygon_masks_ignore = [] for tag, polygon in zip(ignore_tags, polygons): if tag is True: polygon_masks_ignore.append(polygon) else: polygon_masks.append(polygon) level_maps = self.generate_level_targets((h, w), polygon_masks, polygon_masks_ignore) mapping = { 'p3_maps': level_maps[0], 'p4_maps': level_maps[1], 'p5_maps': level_maps[2] } for key, value in mapping.items(): results[key] = value return results def __call__(self, results): results = self.generate_targets(results) return results