import argparse import os import json import numpy as np import glob import cv2 from sklearn.model_selection import train_test_split from labelme import utils np.random.seed(41) # 0为背景 classname_to_id = { "front": 1, # 从1开始标注 "back": 2, } class Lableme2CoCo: def __init__(self): self.images = [] self.annotations = [] self.categories = [] self.img_id = 0 self.ann_id = 0 def save_coco_json(self, instance, save_path): json.dump(instance, open(save_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=1) # indent=2 更加美观显示 # 由json文件构建COCO def to_coco(self, json_path_list): self._init_categories() for json_path in json_path_list: print(json_path) obj = self.read_jsonfile(json_path) self.images.append(self._image(obj, json_path)) shapes = obj['shapes'] for shape in shapes: annotation = self._annotation(shape) self.annotations.append(annotation) self.ann_id += 1 self.img_id += 1 instance = {} instance['info'] = 'spytensor created' instance['license'] = ['license'] instance['images'] = self.images instance['annotations'] = self.annotations instance['categories'] = self.categories return instance # 构建类别 def _init_categories(self): for k, v in classname_to_id.items(): category = {} category['id'] = v category['name'] = k self.categories.append(category) # 构建COCO的image字段 def _image(self, obj, path): image = {} img_x = utils.img_b64_to_arr(obj['imageData']) h, w = img_x.shape[:-1] image['height'] = h image['width'] = w image['id'] = self.img_id image['file_name'] = os.path.basename(path).replace(".files", ".jpg") return image # 构建COCO的annotation字段 def _annotation(self, shape): # print('shape', shape) label = shape['label'] points = shape['points'] annotation = {} annotation['id'] = self.ann_id annotation['image_id'] = self.img_id annotation['category_id'] = int(classname_to_id[label]) annotation['segmentation'] = [np.asarray(points).flatten().tolist()] annotation['bbox'] = self._get_box(points) annotation['iscrowd'] = 0 annotation['area'] = 1.0 return annotation # 读取json文件,返回一个json对象 def read_jsonfile(self, path): with open(path, "r", encoding='utf-8') as f: return json.loads(f.read()) # COCO的格式: [x1,y1,w,h] 对应COCO的bbox格式 def _get_box(self, points): min_x = min_y = np.inf max_x = max_y = 0 for x, y in points: min_x = min(min_x, x) min_y = min(min_y, y) max_x = max(max_x, x) max_y = max(max_y, y) return [min_x, min_y, max_x - min_x, max_y - min_y] if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--labelme_dir', type=str, default='./images') parser.add_argument('--save_coco_dir', type=str, default='./coco_dataset') args = parser.parse_args() labelme_path = args.labelme_dir saved_coco_path = args.save_coco_dir print('reading...') # 创建文件 if not os.path.exists("%scoco/train/" % saved_coco_path): os.makedirs("%scoco/train/" % saved_coco_path) if not os.path.exists("%scoco/train/images/" % saved_coco_path): os.makedirs("%scoco/train/images/" % saved_coco_path) if not os.path.exists("%scoco/eval/" % saved_coco_path): os.makedirs("%scoco/eval/" % saved_coco_path) if not os.path.exists("%scoco/eval/images/" % saved_coco_path): os.makedirs("%scoco/eval/images/" % saved_coco_path) # 获取images目录下所有的joson文件列表 print(labelme_path + "/*.files") json_list_path = glob.glob(labelme_path + "/*.files") print('json_list_path: ', len(json_list_path)) # 数据划分,这里没有区分val2017和tran2017目录,所有图片都放在images目录下 train_path, val_path = train_test_split(json_list_path, test_size=0.1, train_size=0.9) print("train_n:", len(train_path), 'val_n:', len(val_path)) # 把训练集转化为COCO的json格式 l2c_train = Lableme2CoCo() train_instance = l2c_train.to_coco(train_path) l2c_train.save_coco_json(train_instance, '%scoco/train/annotations.files' % saved_coco_path) for file in train_path: # shutil.copy(file.replace("files", "jpg"), "%scoco/images/train2017/" % saved_coco_path) img_name = file.replace('files', 'jpg') temp_img = cv2.imread(img_name) try: img_name = str(img_name).split('\\')[-1] cv2.imwrite("{}coco/train/images/{}".format(saved_coco_path, img_name.replace('jpg', 'jpg')),temp_img) except Exception as e: print(e) print('Wrong Image:', img_name) continue print(img_name + '-->', img_name.replace('jpg', 'jpg')) for file in val_path: # shutil.copy(file.replace("files", "jpg"), "%scoco/images/val2017/" % saved_coco_path) img_name = file.replace('files', 'jpg') temp_img = cv2.imread(img_name) try: img_name = str(img_name).split('\\')[-1] cv2.imwrite("{}coco/eval/images/{}".format(saved_coco_path, img_name.replace('jpg', 'jpg')), temp_img) except Exception as e: print(e) print('Wrong Image:', img_name) continue print(img_name + '-->', img_name.replace('jpg', 'jpg')) # 把验证集转化为COCO的json格式 l2c_val = Lableme2CoCo() val_instance = l2c_val.to_coco(val_path) l2c_val.save_coco_json(val_instance, '%scoco/eval/annotations.files' % saved_coco_path)