# Text Gestalt - [1. Introduction](#1) - [2. Environment](#2) - [3. Model Training / Evaluation / Prediction](#3) - [3.1 Training](#3-1) - [3.2 Evaluation](#3-2) - [3.3 Prediction](#3-3) - [4. Inference and Deployment](#4) - [4.1 Python Inference](#4-1) - [4.2 C++ Inference](#4-2) - [4.3 Serving](#4-3) - [4.4 More](#4-4) - [5. FAQ](#5) ## 1. Introduction Paper: > [Scene Text Telescope: Text-Focused Scene Image Super-Resolution](https://openaccess.thecvf.com/content/CVPR2021/papers/Chen_Scene_Text_Telescope_Text-Focused_Scene_Image_Super-Resolution_CVPR_2021_paper.pdf) > Chen, Jingye, Bin Li, and Xiangyang Xue > CVPR, 2021 Referring to the [FudanOCR](https://github.com/FudanVI/FudanOCR/tree/main/scene-text-telescope) data download instructions, the effect of the super-score algorithm on the TextZoom test set is as follows: |Model|Backbone|config|Acc|Download link| |---|---|---|---|---| |Text Gestalt|tsrn|21.56|0.7411| [configs/sr/sr_telescope.yml](../../configs/sr/sr_telescope.yml)|[train model](https://paddleocr.bj.bcebos.com/contribution/sr_telescope_train.tar)| The [TextZoom dataset](https://paddleocr.bj.bcebos.com/dataset/TextZoom.tar) comes from two superfraction data sets, RealSR and SR-RAW, both of which contain LR-HR pairs. TextZoom has 17367 pairs of training data and 4373 pairs of test data. ## 2. Environment Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code. ## 3. Model Training / Evaluation / Prediction Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different models only requires **changing the configuration file**. Training: Specifically, after the data preparation is completed, the training can be started. The training command is as follows: ``` #Single GPU training (long training period, not recommended) python3 tools/train.py -c configs/sr/sr_telescope.yml #Multi GPU training, specify the gpu number through the --gpus parameter python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/sr/sr_telescope.yml ``` Evaluation: ``` # GPU evaluation python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/sr/sr_telescope.yml -o Global.pretrained_model={path/to/weights}/best_accuracy ``` Prediction: ``` # The configuration file used for prediction must match the training python3 tools/infer_sr.py -c configs/sr/sr_telescope.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words_en/word_52.png ``` ![](../imgs_words_en/word_52.png) After executing the command, the super-resolution result of the above image is as follows: ![](../imgs_results/sr_word_52.png) ## 4. Inference and Deployment ### 4.1 Python Inference First, the model saved during the training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/contribution/Telescope_train.tar.gz) ), you can use the following command to convert: ```shell python3 tools/export_model.py -c configs/sr/sr_telescope.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/sr_out ``` For Text-Telescope super-resolution model inference, the following commands can be executed: ``` python3 tools/infer/predict_sr.py --sr_model_dir=./inference/sr_out --image_dir=doc/imgs_words_en/word_52.png --sr_image_shape=3,32,128 ``` After executing the command, the super-resolution result of the above image is as follows: ![](../imgs_results/sr_word_52.png) ### 4.2 C++ Inference Not supported ### 4.3 Serving Not supported ### 4.4 More Not supported ## 5. FAQ ## Citation ```bibtex @INPROCEEDINGS{9578891, author={Chen, Jingye and Li, Bin and Xue, Xiangyang}, booktitle={2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, title={Scene Text Telescope: Text-Focused Scene Image Super-Resolution}, year={2021}, volume={}, number={}, pages={12021-12030}, doi={10.1109/CVPR46437.2021.01185}} ```