# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is based on https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/matching.py """ try: import lap except: print( 'Warning: Unable to use JDE/FairMOT/ByteTrack, please install lap, for example: `pip install lap`, see https://github.com/gatagat/lap' ) pass import scipy import numpy as np from scipy.spatial.distance import cdist from ..motion import kalman_filter import warnings warnings.filterwarnings("ignore") __all__ = [ 'merge_matches', 'linear_assignment', 'bbox_ious', 'iou_distance', 'embedding_distance', 'fuse_motion', ] def merge_matches(m1, m2, shape): O, P, Q = shape m1 = np.asarray(m1) m2 = np.asarray(m2) M1 = scipy.sparse.coo_matrix( (np.ones(len(m1)), (m1[:, 0], m1[:, 1])), shape=(O, P)) M2 = scipy.sparse.coo_matrix( (np.ones(len(m2)), (m2[:, 0], m2[:, 1])), shape=(P, Q)) mask = M1 * M2 match = mask.nonzero() match = list(zip(match[0], match[1])) unmatched_O = tuple(set(range(O)) - set([i for i, j in match])) unmatched_Q = tuple(set(range(Q)) - set([j for i, j in match])) return match, unmatched_O, unmatched_Q def linear_assignment(cost_matrix, thresh): try: import lap except Exception as e: raise RuntimeError( 'Unable to use JDE/FairMOT/ByteTrack, please install lap, for example: `pip install lap`, see https://github.com/gatagat/lap' ) if cost_matrix.size == 0: return np.empty( (0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple( range(cost_matrix.shape[1])) matches, unmatched_a, unmatched_b = [], [], [] cost, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh) for ix, mx in enumerate(x): if mx >= 0: matches.append([ix, mx]) unmatched_a = np.where(x < 0)[0] unmatched_b = np.where(y < 0)[0] matches = np.asarray(matches) return matches, unmatched_a, unmatched_b def bbox_ious(atlbrs, btlbrs): boxes = np.ascontiguousarray(atlbrs, dtype=np.float32) query_boxes = np.ascontiguousarray(btlbrs, dtype=np.float32) N = boxes.shape[0] K = query_boxes.shape[0] ious = np.zeros((N, K), dtype=boxes.dtype) if N * K == 0: return ious for k in range(K): box_area = ((query_boxes[k, 2] - query_boxes[k, 0] + 1) * (query_boxes[k, 3] - query_boxes[k, 1] + 1)) for n in range(N): iw = (min(boxes[n, 2], query_boxes[k, 2]) - max( boxes[n, 0], query_boxes[k, 0]) + 1) if iw > 0: ih = (min(boxes[n, 3], query_boxes[k, 3]) - max( boxes[n, 1], query_boxes[k, 1]) + 1) if ih > 0: ua = float((boxes[n, 2] - boxes[n, 0] + 1) * (boxes[ n, 3] - boxes[n, 1] + 1) + box_area - iw * ih) ious[n, k] = iw * ih / ua return ious def iou_distance(atracks, btracks): """ Compute cost based on IoU between two list[STrack]. """ if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) or ( len(btracks) > 0 and isinstance(btracks[0], np.ndarray)): atlbrs = atracks btlbrs = btracks else: atlbrs = [track.tlbr for track in atracks] btlbrs = [track.tlbr for track in btracks] _ious = bbox_ious(atlbrs, btlbrs) cost_matrix = 1 - _ious return cost_matrix def embedding_distance(tracks, detections, metric='euclidean'): """ Compute cost based on features between two list[STrack]. """ cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32) if cost_matrix.size == 0: return cost_matrix det_features = np.asarray( [track.curr_feat for track in detections], dtype=np.float32) track_features = np.asarray( [track.smooth_feat for track in tracks], dtype=np.float32) cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Nomalized features return cost_matrix def fuse_motion(kf, cost_matrix, tracks, detections, only_position=False, lambda_=0.98): if cost_matrix.size == 0: return cost_matrix gating_dim = 2 if only_position else 4 gating_threshold = kalman_filter.chi2inv95[gating_dim] measurements = np.asarray([det.to_xyah() for det in detections]) for row, track in enumerate(tracks): gating_distance = kf.gating_distance( track.mean, track.covariance, measurements, only_position, metric='maha') cost_matrix[row, gating_distance > gating_threshold] = np.inf cost_matrix[row] = lambda_ * cost_matrix[row] + (1 - lambda_ ) * gating_distance return cost_matrix