# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from ppdet.core.workspace import register, create from .meta_arch import BaseArch import numpy as np __all__ = ['FasterRCNN'] @register class FasterRCNN(BaseArch): """ Faster R-CNN network, see https://arxiv.org/abs/1506.01497 Args: backbone (object): backbone instance rpn_head (object): `RPNHead` instance bbox_head (object): `BBoxHead` instance bbox_post_process (object): `BBoxPostProcess` instance neck (object): 'FPN' instance """ __category__ = 'architecture' __inject__ = ['bbox_post_process'] def __init__(self, backbone, rpn_head, bbox_head, bbox_post_process, neck=None): super(FasterRCNN, self).__init__() self.backbone = backbone self.neck = neck self.rpn_head = rpn_head self.bbox_head = bbox_head self.bbox_post_process = bbox_post_process def init_cot_head(self, relationship): self.bbox_head.init_cot_head(relationship) @classmethod def from_config(cls, cfg, *args, **kwargs): backbone = create(cfg['backbone']) kwargs = {'input_shape': backbone.out_shape} neck = cfg['neck'] and create(cfg['neck'], **kwargs) out_shape = neck and neck.out_shape or backbone.out_shape kwargs = {'input_shape': out_shape} rpn_head = create(cfg['rpn_head'], **kwargs) bbox_head = create(cfg['bbox_head'], **kwargs) return { 'backbone': backbone, 'neck': neck, "rpn_head": rpn_head, "bbox_head": bbox_head, } def _forward(self): body_feats = self.backbone(self.inputs) if self.neck is not None: body_feats = self.neck(body_feats) if self.training: rois, rois_num, rpn_loss = self.rpn_head(body_feats, self.inputs) bbox_loss, _ = self.bbox_head(body_feats, rois, rois_num, self.inputs) return rpn_loss, bbox_loss else: rois, rois_num, _ = self.rpn_head(body_feats, self.inputs) preds, _ = self.bbox_head(body_feats, rois, rois_num, None) im_shape = self.inputs['im_shape'] scale_factor = self.inputs['scale_factor'] bbox, bbox_num = self.bbox_post_process(preds, (rois, rois_num), im_shape, scale_factor) # rescale the prediction back to origin image bboxes, bbox_pred, bbox_num = self.bbox_post_process.get_pred( bbox, bbox_num, im_shape, scale_factor) return bbox_pred, bbox_num def get_loss(self, ): rpn_loss, bbox_loss = self._forward() loss = {} loss.update(rpn_loss) loss.update(bbox_loss) total_loss = paddle.add_n(list(loss.values())) loss.update({'loss': total_loss}) return loss def get_pred(self): bbox_pred, bbox_num = self._forward() output = {'bbox': bbox_pred, 'bbox_num': bbox_num} return output def target_bbox_forward(self, data): body_feats = self.backbone(data) if self.neck is not None: body_feats = self.neck(body_feats) rois = [roi for roi in data['gt_bbox']] rois_num = paddle.concat([paddle.shape(roi)[0] for roi in rois]) preds, _ = self.bbox_head(body_feats, rois, rois_num, None, cot=True) return preds def relationship_learning(self, loader, num_classes_novel): print('computing relationship') train_labels_list = [] label_list = [] for step_id, data in enumerate(loader): _, bbox_prob = self.target_bbox_forward(data) batch_size = data['im_id'].shape[0] for i in range(batch_size): num_bbox = data['gt_class'][i].shape[0] train_labels = data['gt_class'][i] train_labels_list.append(train_labels.numpy().squeeze(1)) base_labels = bbox_prob.detach().numpy()[:,:-1] label_list.append(base_labels) labels = np.concatenate(train_labels_list, 0) probabilities = np.concatenate(label_list, 0) N_t = np.max(labels) + 1 conditional = [] for i in range(N_t): this_class = probabilities[labels == i] average = np.mean(this_class, axis=0, keepdims=True) conditional.append(average) return np.concatenate(conditional)