# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import json import paddle import numpy as np import typing from collections import defaultdict from pathlib import Path from .map_utils import prune_zero_padding, DetectionMAP from .coco_utils import get_infer_results, cocoapi_eval from .widerface_utils import face_eval_run from ppdet.data.source.category import get_categories from ppdet.modeling.rbox_utils import poly2rbox_np from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) __all__ = [ 'Metric', 'COCOMetric', 'VOCMetric', 'WiderFaceMetric', 'get_infer_results', 'RBoxMetric', 'SNIPERCOCOMetric' ] COCO_SIGMAS = np.array([ .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89 ]) / 10.0 CROWD_SIGMAS = np.array( [.79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89, .79, .79]) / 10.0 class Metric(paddle.metric.Metric): def name(self): return self.__class__.__name__ def reset(self): pass def accumulate(self): pass # paddle.metric.Metric defined :metch:`update`, :meth:`accumulate` # :metch:`reset`, in ppdet, we also need following 2 methods: # abstract method for logging metric results def log(self): pass # abstract method for getting metric results def get_results(self): pass class COCOMetric(Metric): def __init__(self, anno_file, **kwargs): self.anno_file = anno_file self.clsid2catid = kwargs.get('clsid2catid', None) if self.clsid2catid is None: self.clsid2catid, _ = get_categories('COCO', anno_file) self.classwise = kwargs.get('classwise', False) self.output_eval = kwargs.get('output_eval', None) # TODO: bias should be unified self.bias = kwargs.get('bias', 0) self.save_prediction_only = kwargs.get('save_prediction_only', False) self.iou_type = kwargs.get('IouType', 'bbox') if not self.save_prediction_only: assert os.path.isfile(anno_file), \ "anno_file {} not a file".format(anno_file) if self.output_eval is not None: Path(self.output_eval).mkdir(exist_ok=True) self.reset() def reset(self): # only bbox and mask evaluation support currently self.results = {'bbox': [], 'mask': [], 'segm': [], 'keypoint': []} self.eval_results = {} def update(self, inputs, outputs): outs = {} # outputs Tensor -> numpy.ndarray for k, v in outputs.items(): outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v # multi-scale inputs: all inputs have same im_id if isinstance(inputs, typing.Sequence): im_id = inputs[0]['im_id'] else: im_id = inputs['im_id'] outs['im_id'] = im_id.numpy() if isinstance(im_id, paddle.Tensor) else im_id infer_results = get_infer_results( outs, self.clsid2catid, bias=self.bias) self.results['bbox'] += infer_results[ 'bbox'] if 'bbox' in infer_results else [] self.results['mask'] += infer_results[ 'mask'] if 'mask' in infer_results else [] self.results['segm'] += infer_results[ 'segm'] if 'segm' in infer_results else [] self.results['keypoint'] += infer_results[ 'keypoint'] if 'keypoint' in infer_results else [] def accumulate(self): if len(self.results['bbox']) > 0: output = "bbox.json" if self.output_eval: output = os.path.join(self.output_eval, output) with open(output, 'w') as f: json.dump(self.results['bbox'], f) logger.info('The bbox result is saved to bbox.json.') if self.save_prediction_only: logger.info('The bbox result is saved to {} and do not ' 'evaluate the mAP.'.format(output)) else: bbox_stats = cocoapi_eval( output, 'bbox', anno_file=self.anno_file, classwise=self.classwise) self.eval_results['bbox'] = bbox_stats sys.stdout.flush() if len(self.results['mask']) > 0: output = "mask.json" if self.output_eval: output = os.path.join(self.output_eval, output) with open(output, 'w') as f: json.dump(self.results['mask'], f) logger.info('The mask result is saved to mask.json.') if self.save_prediction_only: logger.info('The mask result is saved to {} and do not ' 'evaluate the mAP.'.format(output)) else: seg_stats = cocoapi_eval( output, 'segm', anno_file=self.anno_file, classwise=self.classwise) self.eval_results['mask'] = seg_stats sys.stdout.flush() if len(self.results['segm']) > 0: output = "segm.json" if self.output_eval: output = os.path.join(self.output_eval, output) with open(output, 'w') as f: json.dump(self.results['segm'], f) logger.info('The segm result is saved to segm.json.') if self.save_prediction_only: logger.info('The segm result is saved to {} and do not ' 'evaluate the mAP.'.format(output)) else: seg_stats = cocoapi_eval( output, 'segm', anno_file=self.anno_file, classwise=self.classwise) self.eval_results['mask'] = seg_stats sys.stdout.flush() if len(self.results['keypoint']) > 0: output = "keypoint.json" if self.output_eval: output = os.path.join(self.output_eval, output) with open(output, 'w') as f: json.dump(self.results['keypoint'], f) logger.info('The keypoint result is saved to keypoint.json.') if self.save_prediction_only: logger.info('The keypoint result is saved to {} and do not ' 'evaluate the mAP.'.format(output)) else: style = 'keypoints' use_area = True sigmas = COCO_SIGMAS if self.iou_type == 'keypoints_crowd': style = 'keypoints_crowd' use_area = False sigmas = CROWD_SIGMAS keypoint_stats = cocoapi_eval( output, style, anno_file=self.anno_file, classwise=self.classwise, sigmas=sigmas, use_area=use_area) self.eval_results['keypoint'] = keypoint_stats sys.stdout.flush() def log(self): pass def get_results(self): return self.eval_results class VOCMetric(Metric): def __init__(self, label_list, class_num=20, overlap_thresh=0.5, map_type='11point', is_bbox_normalized=False, evaluate_difficult=False, classwise=False, output_eval=None, save_prediction_only=False): assert os.path.isfile(label_list), \ "label_list {} not a file".format(label_list) self.clsid2catid, self.catid2name = get_categories('VOC', label_list) self.overlap_thresh = overlap_thresh self.map_type = map_type self.evaluate_difficult = evaluate_difficult self.output_eval = output_eval self.save_prediction_only = save_prediction_only self.detection_map = DetectionMAP( class_num=class_num, overlap_thresh=overlap_thresh, map_type=map_type, is_bbox_normalized=is_bbox_normalized, evaluate_difficult=evaluate_difficult, catid2name=self.catid2name, classwise=classwise) self.reset() def reset(self): self.results = {'bbox': [], 'score': [], 'label': []} self.detection_map.reset() def update(self, inputs, outputs): bbox_np = outputs['bbox'].numpy() if isinstance( outputs['bbox'], paddle.Tensor) else outputs['bbox'] bboxes = bbox_np[:, 2:] scores = bbox_np[:, 1] labels = bbox_np[:, 0] bbox_lengths = outputs['bbox_num'].numpy() if isinstance( outputs['bbox_num'], paddle.Tensor) else outputs['bbox_num'] self.results['bbox'].append(bboxes.tolist()) self.results['score'].append(scores.tolist()) self.results['label'].append(labels.tolist()) if bboxes.shape == (1, 1) or bboxes is None: return if self.save_prediction_only: return gt_boxes = inputs['gt_bbox'] gt_labels = inputs['gt_class'] difficults = inputs['difficult'] if not self.evaluate_difficult \ else None if 'scale_factor' in inputs: scale_factor = inputs['scale_factor'].numpy() if isinstance( inputs['scale_factor'], paddle.Tensor) else inputs['scale_factor'] else: scale_factor = np.ones((gt_boxes.shape[0], 2)).astype('float32') bbox_idx = 0 for i in range(len(gt_boxes)): gt_box = gt_boxes[i].numpy() if isinstance( gt_boxes[i], paddle.Tensor) else gt_boxes[i] h, w = scale_factor[i] gt_box = gt_box / np.array([w, h, w, h]) gt_label = gt_labels[i].numpy() if isinstance( gt_labels[i], paddle.Tensor) else gt_labels[i] if difficults is not None: difficult = difficults[i].numpy() if isinstance( difficults[i], paddle.Tensor) else difficults[i] else: difficult = None bbox_num = bbox_lengths[i] bbox = bboxes[bbox_idx:bbox_idx + bbox_num] score = scores[bbox_idx:bbox_idx + bbox_num] label = labels[bbox_idx:bbox_idx + bbox_num] gt_box, gt_label, difficult = prune_zero_padding(gt_box, gt_label, difficult) self.detection_map.update(bbox, score, label, gt_box, gt_label, difficult) bbox_idx += bbox_num def accumulate(self): output = "bbox.json" if self.output_eval: output = os.path.join(self.output_eval, output) with open(output, 'w') as f: json.dump(self.results, f) logger.info('The bbox result is saved to bbox.json.') if self.save_prediction_only: return logger.info("Accumulating evaluatation results...") self.detection_map.accumulate() def log(self): map_stat = 100. * self.detection_map.get_map() logger.info("mAP({:.2f}, {}) = {:.2f}%".format(self.overlap_thresh, self.map_type, map_stat)) def get_results(self): return {'bbox': [self.detection_map.get_map()]} class WiderFaceMetric(Metric): def __init__(self, image_dir, anno_file, multi_scale=True): self.image_dir = image_dir self.anno_file = anno_file self.multi_scale = multi_scale self.clsid2catid, self.catid2name = get_categories('widerface') def update(self, model): face_eval_run( model, self.image_dir, self.anno_file, pred_dir='output/pred', eval_mode='widerface', multi_scale=self.multi_scale) class RBoxMetric(Metric): def __init__(self, anno_file, **kwargs): self.anno_file = anno_file self.clsid2catid, self.catid2name = get_categories('RBOX', anno_file) self.catid2clsid = {v: k for k, v in self.clsid2catid.items()} self.classwise = kwargs.get('classwise', False) self.output_eval = kwargs.get('output_eval', None) self.save_prediction_only = kwargs.get('save_prediction_only', False) self.overlap_thresh = kwargs.get('overlap_thresh', 0.5) self.map_type = kwargs.get('map_type', '11point') self.evaluate_difficult = kwargs.get('evaluate_difficult', False) self.imid2path = kwargs.get('imid2path', None) class_num = len(self.catid2name) self.detection_map = DetectionMAP( class_num=class_num, overlap_thresh=self.overlap_thresh, map_type=self.map_type, is_bbox_normalized=False, evaluate_difficult=self.evaluate_difficult, catid2name=self.catid2name, classwise=self.classwise) self.reset() def reset(self): self.results = [] self.detection_map.reset() def update(self, inputs, outputs): outs = {} # outputs Tensor -> numpy.ndarray for k, v in outputs.items(): outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v im_id = inputs['im_id'] im_id = im_id.numpy() if isinstance(im_id, paddle.Tensor) else im_id outs['im_id'] = im_id infer_results = get_infer_results(outs, self.clsid2catid) infer_results = infer_results['bbox'] if 'bbox' in infer_results else [] self.results += infer_results if self.save_prediction_only: return gt_boxes = inputs['gt_poly'] gt_labels = inputs['gt_class'] if 'scale_factor' in inputs: scale_factor = inputs['scale_factor'].numpy() if isinstance( inputs['scale_factor'], paddle.Tensor) else inputs['scale_factor'] else: scale_factor = np.ones((gt_boxes.shape[0], 2)).astype('float32') for i in range(len(gt_boxes)): gt_box = gt_boxes[i].numpy() if isinstance( gt_boxes[i], paddle.Tensor) else gt_boxes[i] h, w = scale_factor[i] gt_box = gt_box / np.array([w, h, w, h, w, h, w, h]) gt_label = gt_labels[i].numpy() if isinstance( gt_labels[i], paddle.Tensor) else gt_labels[i] gt_box, gt_label, _ = prune_zero_padding(gt_box, gt_label) bbox = [ res['bbox'] for res in infer_results if int(res['image_id']) == int(im_id[i]) ] score = [ res['score'] for res in infer_results if int(res['image_id']) == int(im_id[i]) ] label = [ self.catid2clsid[int(res['category_id'])] for res in infer_results if int(res['image_id']) == int(im_id[i]) ] self.detection_map.update(bbox, score, label, gt_box, gt_label) def save_results(self, results, output_dir, imid2path): if imid2path: data_dicts = defaultdict(list) for result in results: image_id = result['image_id'] data_dicts[image_id].append(result) for image_id, image_path in imid2path.items(): basename = os.path.splitext(os.path.split(image_path)[-1])[0] output = os.path.join(output_dir, "{}.txt".format(basename)) dets = data_dicts.get(image_id, []) with open(output, 'w') as f: for det in dets: catid, bbox, score = det['category_id'], det[ 'bbox'], det['score'] bbox_pred = '{} {} '.format(self.catid2name[catid], score) + ' '.join( [str(e) for e in bbox]) f.write(bbox_pred + '\n') logger.info('The bbox result is saved to {}.'.format(output_dir)) else: output = os.path.join(output_dir, "bbox.json") with open(output, 'w') as f: json.dump(results, f) logger.info('The bbox result is saved to {}.'.format(output)) def accumulate(self): if self.output_eval: self.save_results(self.results, self.output_eval, self.imid2path) if not self.save_prediction_only: logger.info("Accumulating evaluatation results...") self.detection_map.accumulate() def log(self): map_stat = 100. * self.detection_map.get_map() logger.info("mAP({:.2f}, {}) = {:.2f}%".format(self.overlap_thresh, self.map_type, map_stat)) def get_results(self): return {'bbox': [self.detection_map.get_map()]} class SNIPERCOCOMetric(COCOMetric): def __init__(self, anno_file, **kwargs): super(SNIPERCOCOMetric, self).__init__(anno_file, **kwargs) self.dataset = kwargs["dataset"] self.chip_results = [] def reset(self): # only bbox and mask evaluation support currently self.results = {'bbox': [], 'mask': [], 'segm': [], 'keypoint': []} self.eval_results = {} self.chip_results = [] def update(self, inputs, outputs): outs = {} # outputs Tensor -> numpy.ndarray for k, v in outputs.items(): outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v im_id = inputs['im_id'] outs['im_id'] = im_id.numpy() if isinstance(im_id, paddle.Tensor) else im_id self.chip_results.append(outs) def accumulate(self): results = self.dataset.anno_cropper.aggregate_chips_detections( self.chip_results) for outs in results: infer_results = get_infer_results( outs, self.clsid2catid, bias=self.bias) self.results['bbox'] += infer_results[ 'bbox'] if 'bbox' in infer_results else [] super(SNIPERCOCOMetric, self).accumulate()