// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // The code is based on // https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/csrc/box_iou_rotated/ #pragma once #include #include #include #ifdef __CUDACC__ // Designates functions callable from the host (CPU) and the device (GPU) #define HOST_DEVICE __host__ __device__ #define HOST_DEVICE_INLINE HOST_DEVICE __forceinline__ #else #include #define HOST_DEVICE #define HOST_DEVICE_INLINE HOST_DEVICE inline #endif namespace { template struct RotatedBox { T x_ctr, y_ctr, w, h, a; }; template struct Point { T x, y; HOST_DEVICE_INLINE Point(const T &px = 0, const T &py = 0) : x(px), y(py) {} HOST_DEVICE_INLINE Point operator+(const Point &p) const { return Point(x + p.x, y + p.y); } HOST_DEVICE_INLINE Point &operator+=(const Point &p) { x += p.x; y += p.y; return *this; } HOST_DEVICE_INLINE Point operator-(const Point &p) const { return Point(x - p.x, y - p.y); } HOST_DEVICE_INLINE Point operator*(const T coeff) const { return Point(x * coeff, y * coeff); } }; template HOST_DEVICE_INLINE T dot_2d(const Point &A, const Point &B) { return A.x * B.x + A.y * B.y; } template HOST_DEVICE_INLINE T cross_2d(const Point &A, const Point &B) { return A.x * B.y - B.x * A.y; } template HOST_DEVICE_INLINE void get_rotated_vertices(const RotatedBox &box, Point (&pts)[4]) { // M_PI / 180. == 0.01745329251 // double theta = box.a * 0.01745329251; // MODIFIED double theta = box.a; T cosTheta2 = (T)cos(theta) * 0.5f; T sinTheta2 = (T)sin(theta) * 0.5f; // y: top --> down; x: left --> right pts[0].x = box.x_ctr - sinTheta2 * box.h - cosTheta2 * box.w; pts[0].y = box.y_ctr + cosTheta2 * box.h - sinTheta2 * box.w; pts[1].x = box.x_ctr + sinTheta2 * box.h - cosTheta2 * box.w; pts[1].y = box.y_ctr - cosTheta2 * box.h - sinTheta2 * box.w; pts[2].x = 2 * box.x_ctr - pts[0].x; pts[2].y = 2 * box.y_ctr - pts[0].y; pts[3].x = 2 * box.x_ctr - pts[1].x; pts[3].y = 2 * box.y_ctr - pts[1].y; } template HOST_DEVICE_INLINE int get_intersection_points(const Point (&pts1)[4], const Point (&pts2)[4], Point (&intersections)[24]) { // Line vector // A line from p1 to p2 is: p1 + (p2-p1)*t, t=[0,1] Point vec1[4], vec2[4]; for (int i = 0; i < 4; i++) { vec1[i] = pts1[(i + 1) % 4] - pts1[i]; vec2[i] = pts2[(i + 1) % 4] - pts2[i]; } // Line test - test all line combos for intersection int num = 0; // number of intersections for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { // Solve for 2x2 Ax=b T det = cross_2d(vec2[j], vec1[i]); // This takes care of parallel lines if (fabs(det) <= 1e-14) { continue; } auto vec12 = pts2[j] - pts1[i]; T t1 = cross_2d(vec2[j], vec12) / det; T t2 = cross_2d(vec1[i], vec12) / det; if (t1 >= 0.0f && t1 <= 1.0f && t2 >= 0.0f && t2 <= 1.0f) { intersections[num++] = pts1[i] + vec1[i] * t1; } } } // Check for vertices of rect1 inside rect2 { const auto &AB = vec2[0]; const auto &DA = vec2[3]; auto ABdotAB = dot_2d(AB, AB); auto ADdotAD = dot_2d(DA, DA); for (int i = 0; i < 4; i++) { // assume ABCD is the rectangle, and P is the point to be judged // P is inside ABCD iff. P's projection on AB lies within AB // and P's projection on AD lies within AD auto AP = pts1[i] - pts2[0]; auto APdotAB = dot_2d(AP, AB); auto APdotAD = -dot_2d(AP, DA); if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) && (APdotAD <= ADdotAD)) { intersections[num++] = pts1[i]; } } } // Reverse the check - check for vertices of rect2 inside rect1 { const auto &AB = vec1[0]; const auto &DA = vec1[3]; auto ABdotAB = dot_2d(AB, AB); auto ADdotAD = dot_2d(DA, DA); for (int i = 0; i < 4; i++) { auto AP = pts2[i] - pts1[0]; auto APdotAB = dot_2d(AP, AB); auto APdotAD = -dot_2d(AP, DA); if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) && (APdotAD <= ADdotAD)) { intersections[num++] = pts2[i]; } } } return num; } template HOST_DEVICE_INLINE int convex_hull_graham(const Point (&p)[24], const int &num_in, Point (&q)[24], bool shift_to_zero = false) { assert(num_in >= 2); // Step 1: // Find point with minimum y // if more than 1 points have the same minimum y, // pick the one with the minimum x. int t = 0; for (int i = 1; i < num_in; i++) { if (p[i].y < p[t].y || (p[i].y == p[t].y && p[i].x < p[t].x)) { t = i; } } auto &start = p[t]; // starting point // Step 2: // Subtract starting point from every points (for sorting in the next step) for (int i = 0; i < num_in; i++) { q[i] = p[i] - start; } // Swap the starting point to position 0 auto tmp = q[0]; q[0] = q[t]; q[t] = tmp; // Step 3: // Sort point 1 ~ num_in according to their relative cross-product values // (essentially sorting according to angles) // If the angles are the same, sort according to their distance to origin T dist[24]; for (int i = 0; i < num_in; i++) { dist[i] = dot_2d(q[i], q[i]); } #ifdef __CUDACC__ // CUDA version // In the future, we can potentially use thrust // for sorting here to improve speed (though not guaranteed) for (int i = 1; i < num_in - 1; i++) { for (int j = i + 1; j < num_in; j++) { T crossProduct = cross_2d(q[i], q[j]); if ((crossProduct < -1e-6) || (fabs(crossProduct) < 1e-6 && dist[i] > dist[j])) { auto q_tmp = q[i]; q[i] = q[j]; q[j] = q_tmp; auto dist_tmp = dist[i]; dist[i] = dist[j]; dist[j] = dist_tmp; } } } #else // CPU version std::sort(q + 1, q + num_in, [](const Point &A, const Point &B) -> bool { T temp = cross_2d(A, B); if (fabs(temp) < 1e-6) { return dot_2d(A, A) < dot_2d(B, B); } else { return temp > 0; } }); #endif // Step 4: // Make sure there are at least 2 points (that don't overlap with each other) // in the stack int k; // index of the non-overlapped second point for (k = 1; k < num_in; k++) { if (dist[k] > 1e-8) { break; } } if (k == num_in) { // We reach the end, which means the convex hull is just one point q[0] = p[t]; return 1; } q[1] = q[k]; int m = 2; // 2 points in the stack // Step 5: // Finally we can start the scanning process. // When a non-convex relationship between the 3 points is found // (either concave shape or duplicated points), // we pop the previous point from the stack // until the 3-point relationship is convex again, or // until the stack only contains two points for (int i = k + 1; i < num_in; i++) { while (m > 1 && cross_2d(q[i] - q[m - 2], q[m - 1] - q[m - 2]) >= 0) { m--; } q[m++] = q[i]; } // Step 6 (Optional): // In general sense we need the original coordinates, so we // need to shift the points back (reverting Step 2) // But if we're only interested in getting the area/perimeter of the shape // We can simply return. if (!shift_to_zero) { for (int i = 0; i < m; i++) { q[i] += start; } } return m; } template HOST_DEVICE_INLINE T polygon_area(const Point (&q)[24], const int &m) { if (m <= 2) { return 0; } T area = 0; for (int i = 1; i < m - 1; i++) { area += fabs(cross_2d(q[i] - q[0], q[i + 1] - q[0])); } return area / 2.0; } template HOST_DEVICE_INLINE T rboxes_intersection(const RotatedBox &box1, const RotatedBox &box2) { // There are up to 4 x 4 + 4 + 4 = 24 intersections (including dups) returned // from rotated_rect_intersection_pts Point intersectPts[24], orderedPts[24]; Point pts1[4]; Point pts2[4]; get_rotated_vertices(box1, pts1); get_rotated_vertices(box2, pts2); int num = get_intersection_points(pts1, pts2, intersectPts); if (num <= 2) { return 0.0; } // Convex Hull to order the intersection points in clockwise order and find // the contour area. int num_convex = convex_hull_graham(intersectPts, num, orderedPts, true); return polygon_area(orderedPts, num_convex); } } // namespace template HOST_DEVICE_INLINE T rbox_iou_single(T const *const box1_raw, T const *const box2_raw) { // shift center to the middle point to achieve higher precision in result RotatedBox box1, box2; auto center_shift_x = (box1_raw[0] + box2_raw[0]) / 2.0; auto center_shift_y = (box1_raw[1] + box2_raw[1]) / 2.0; box1.x_ctr = box1_raw[0] - center_shift_x; box1.y_ctr = box1_raw[1] - center_shift_y; box1.w = box1_raw[2]; box1.h = box1_raw[3]; box1.a = box1_raw[4]; box2.x_ctr = box2_raw[0] - center_shift_x; box2.y_ctr = box2_raw[1] - center_shift_y; box2.w = box2_raw[2]; box2.h = box2_raw[3]; box2.a = box2_raw[4]; if (box1.w < 1e-2 || box1.h < 1e-2 || box2.w < 1e-2 || box2.h < 1e-2) { return 0.f; } const T area1 = box1.w * box1.h; const T area2 = box2.w * box2.h; const T intersection = rboxes_intersection(box1, box2); const T iou = intersection / (area1 + area2 - intersection); return iou; } /** Computes ceil(a / b) */ HOST_DEVICE inline int CeilDiv(const int a, const int b) { return (a + b - 1) / b; }