// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include #include #include "paddle_inference_api.h" // NOLINT #include "include/config_parser.h" #include "include/preprocess_op.h" #include "include/utils.h" using namespace paddle_infer; // NOLINT namespace PaddleDetection { class JDEPredictor { public: explicit JDEPredictor(const std::string& device = "CPU", const std::string& model_dir = "", const double threshold = -1., const std::string& run_mode = "paddle", const int gpu_id = 0, const bool use_mkldnn = false, const int cpu_threads = 1, bool trt_calib_mode = false, const int min_box_area = 200) { this->device_ = device; this->gpu_id_ = gpu_id; this->use_mkldnn_ = use_mkldnn; this->cpu_math_library_num_threads_ = cpu_threads; this->trt_calib_mode_ = trt_calib_mode; this->min_box_area_ = min_box_area; config_.load_config(model_dir); this->min_subgraph_size_ = config_.min_subgraph_size_; preprocessor_.Init(config_.preprocess_info_); LoadModel(model_dir, run_mode); this->conf_thresh_ = config_.conf_thresh_; } // Load Paddle inference model void LoadModel(const std::string& model_dir, const std::string& run_mode = "paddle"); // Run predictor void Predict(const std::vector imgs, const double threshold = 0.5, MOTResult* result = nullptr, std::vector* times = nullptr); private: std::string device_ = "CPU"; float threhold = 0.5; int gpu_id_ = 0; bool use_mkldnn_ = false; int cpu_math_library_num_threads_ = 1; int min_subgraph_size_ = 3; bool trt_calib_mode_ = false; // Preprocess image and copy data to input buffer void Preprocess(const cv::Mat& image_mat); // Postprocess result void Postprocess(const cv::Mat dets, const cv::Mat emb, MOTResult* result); std::shared_ptr predictor_; Preprocessor preprocessor_; ImageBlob inputs_; std::vector bbox_data_; std::vector emb_data_; double threshold_; ConfigPaser config_; float min_box_area_; float conf_thresh_; }; } // namespace PaddleDetection