_BASE_: [ '../datasets/coco_detection.yml', '../runtime.yml', '_base_/yolov3_darknet53.yml', '_base_/yolov3_reader.yml', ] snapshot_epoch: 5 weights: output/yolov3_darknet53_270e_coco/model_final norm_type: bn YOLOv3Loss: ignore_thresh: 0.5 downsample: [32, 16, 8] label_smooth: false worker_num: 8 TrainReader: inputs_def: num_max_boxes: 50 sample_transforms: - Decode: {} - RandomDistort: {} - RandomExpand: {fill_value: [123.675, 116.28, 103.53], ratio: 2.0} - RandomCrop: {} - RandomFlip: {} batch_transforms: - BatchRandomResize: {target_size: [416], random_size: True, random_interp: True, keep_ratio: False} - NormalizeBox: {} - PadBox: {num_max_boxes: 50} - BboxXYXY2XYWH: {} - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} - Permute: {} - Gt2YoloTarget: {anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]], anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]], downsample_ratios: [32, 16, 8], iou_thresh: 0.5} batch_size: 32 shuffle: true drop_last: true mixup_epoch: -1 use_shared_memory: true epoch: 320 LearningRate: base_lr: 0.001 schedulers: - !CosineDecay max_epochs: 320 - !LinearWarmup start_factor: 0. epochs: 4 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.016 type: L2