_BASE_: [ '../datasets/coco_instance.yml', '../runtime.yml', '_base_/solov2_r50_fpn.yml', '_base_/optimizer_1x.yml', '_base_/solov2_reader.yml', ] pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_vd_pretrained.pdparams weights: output/solov2_r101_vd_fpn_3x_coco/model_final epoch: 36 use_ema: true ema_decay: 0.9998 ResNet: depth: 101 variant: d freeze_at: 0 return_idx: [0,1,2,3] dcn_v2_stages: [1,2,3] num_stages: 4 SOLOv2Head: seg_feat_channels: 512 stacked_convs: 4 num_grids: [40, 36, 24, 16, 12] kernel_out_channels: 256 solov2_loss: SOLOv2Loss mask_nms: MaskMatrixNMS dcn_v2_stages: [0, 1, 2, 3] SOLOv2MaskHead: mid_channels: 128 out_channels: 256 start_level: 0 end_level: 3 use_dcn_in_tower: True LearningRate: base_lr: 0.01 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [24, 33] - !LinearWarmup start_factor: 0. steps: 2000 TrainReader: sample_transforms: - Decode: {} - Poly2Mask: {} - RandomResize: {interp: 1, target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: True} - RandomFlip: {} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: 32} - Gt2Solov2Target: {num_grids: [40, 36, 24, 16, 12], scale_ranges: [[1, 96], [48, 192], [96, 384], [192, 768], [384, 2048]], coord_sigma: 0.2} batch_size: 2 shuffle: true drop_last: true