weights: output/picodet_l_1024_coco_lcnet_lvjian1/model_final pretrain_weights: https://paddledet.bj.bcebos.com/models/picodet_l_640_coco_lcnet.pdparams worker_num: 2 eval_height: &eval_height 1024 eval_width: &eval_width 1024 eval_size: &eval_size [*eval_height, *eval_width] metric: COCO num_classes: 5 TrainDataset: !COCODataSet image_dir: images anno_path: train.json dataset_dir: dataset/slice_lvjian1_data/train data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd'] EvalDataset: !COCODataSet image_dir: images anno_path: val.json dataset_dir: dataset/slice_lvjian1_data/eval TestDataset: !ImageFolder anno_path: val.json dataset_dir: dataset/slice_lvjian1_data/eval epoch: 50 LearningRate: base_lr: 0.006 schedulers: - !CosineDecay max_epochs: 50 - !LinearWarmup start_factor: 0.001 steps: 300 TrainReader: sample_transforms: - Decode: {} - RandomCrop: {} - RandomFlip: {prob: 0.5} - RandomDistort: {} batch_transforms: - BatchRandomResize: {target_size: [960, 992, 1024, 1056, 1088], random_size: True, random_interp: True, keep_ratio: False} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} - PadGT: {} batch_size: 8 shuffle: true drop_last: true EvalReader: sample_transforms: - Decode: {} - Resize: {interp: 2, target_size: *eval_size, keep_ratio: False} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: 32} batch_size: 8 shuffle: false TestReader: inputs_def: image_shape: [1, 3, *eval_height, *eval_width] sample_transforms: - Decode: {} - Resize: {interp: 2, target_size: *eval_size, keep_ratio: False} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_size: 1 use_gpu: true use_xpu: false log_iter: 100 save_dir: output snapshot_epoch: 10 print_flops: false find_unused_parameters: True use_ema: true # Exporting the model export: post_process: True # Whether post-processing is included in the network when export model. nms: True # Whether NMS is included in the network when export model. benchmark: False # It is used to testing model performance, if set `True`, post-process and NMS will not be exported. OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.00004 type: L2 architecture: PicoDet PicoDet: backbone: LCNet neck: LCPAN head: PicoHeadV2 LCNet: scale: 2.0 feature_maps: [3, 4, 5] LCPAN: out_channels: 160 use_depthwise: True num_features: 4 PicoHeadV2: conv_feat: name: PicoFeat feat_in: 160 feat_out: 160 num_convs: 4 num_fpn_stride: 4 norm_type: bn share_cls_reg: True use_se: True fpn_stride: [8, 16, 32, 64] feat_in_chan: 160 prior_prob: 0.01 reg_max: 7 cell_offset: 0.5 grid_cell_scale: 5.0 static_assigner_epoch: 100 use_align_head: True static_assigner: name: ATSSAssigner topk: 9 force_gt_matching: False assigner: name: TaskAlignedAssigner topk: 13 alpha: 1.0 beta: 6.0 loss_class: name: VarifocalLoss use_sigmoid: False iou_weighted: True loss_weight: 1.0 loss_dfl: name: DistributionFocalLoss loss_weight: 0.5 loss_bbox: name: GIoULoss loss_weight: 2.5 nms: name: MultiClassNMS nms_top_k: 1000 keep_top_k: 100 score_threshold: 0.025 nms_threshold: 0.6