# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import six import glob import copy import yaml import argparse import cv2 import numpy as np from shapely.geometry import Polygon from onnxruntime import InferenceSession # preprocess ops def decode_image(img_path): with open(img_path, 'rb') as f: im_read = f.read() data = np.frombuffer(im_read, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) img_info = { "im_shape": np.array( im.shape[:2], dtype=np.float32), "scale_factor": np.array( [1., 1.], dtype=np.float32) } return im, img_info class Resize(object): def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR): if isinstance(target_size, int): target_size = [target_size, target_size] self.target_size = target_size self.keep_ratio = keep_ratio self.interp = interp def __call__(self, im, im_info): assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') im_info['scale_factor'] = np.array( [im_scale_y, im_scale_x]).astype('float32') return im, im_info def generate_scale(self, im): origin_shape = im.shape[:2] im_c = im.shape[2] if self.keep_ratio: im_size_min = np.min(origin_shape) im_size_max = np.max(origin_shape) target_size_min = np.min(self.target_size) target_size_max = np.max(self.target_size) im_scale = float(target_size_min) / float(im_size_min) if np.round(im_scale * im_size_max) > target_size_max: im_scale = float(target_size_max) / float(im_size_max) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = self.target_size im_scale_y = resize_h / float(origin_shape[0]) im_scale_x = resize_w / float(origin_shape[1]) return im_scale_y, im_scale_x class Permute(object): def __init__(self, ): super(Permute, self).__init__() def __call__(self, im, im_info): im = im.transpose((2, 0, 1)) return im, im_info class NormalizeImage(object): def __init__(self, mean, std, is_scale=True, norm_type='mean_std'): self.mean = mean self.std = std self.is_scale = is_scale self.norm_type = norm_type def __call__(self, im, im_info): im = im.astype(np.float32, copy=False) if self.is_scale: scale = 1.0 / 255.0 im *= scale if self.norm_type == 'mean_std': mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] im -= mean im /= std return im, im_info class PadStride(object): def __init__(self, stride=0): self.coarsest_stride = stride def __call__(self, im, im_info): coarsest_stride = self.coarsest_stride if coarsest_stride <= 0: return im, im_info im_c, im_h, im_w = im.shape pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride) pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride) padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = im return padding_im, im_info class Compose: def __init__(self, transforms): self.transforms = [] for op_info in transforms: new_op_info = op_info.copy() op_type = new_op_info.pop('type') self.transforms.append(eval(op_type)(**new_op_info)) def __call__(self, img_path): img, im_info = decode_image(img_path) for t in self.transforms: img, im_info = t(img, im_info) inputs = copy.deepcopy(im_info) inputs['image'] = img return inputs # postprocess def rbox_iou(g, p): g = np.array(g) p = np.array(p) g = Polygon(g[:8].reshape((4, 2))) p = Polygon(p[:8].reshape((4, 2))) g = g.buffer(0) p = p.buffer(0) if not g.is_valid or not p.is_valid: return 0 inter = Polygon(g).intersection(Polygon(p)).area union = g.area + p.area - inter if union == 0: return 0 else: return inter / union def multiclass_nms_rotated(pred_bboxes, pred_scores, iou_threshlod=0.1, score_threshold=0.1): """ Args: pred_bboxes (numpy.ndarray): [B, N, 8] pred_scores (numpy.ndarray): [B, C, N] Return: bboxes (numpy.ndarray): [N, 10] bbox_num (numpy.ndarray): [B] """ bbox_num = [] bboxes = [] for bbox_per_img, score_per_img in zip(pred_bboxes, pred_scores): num_per_img = 0 for cls_id, score_per_cls in enumerate(score_per_img): keep_mask = score_per_cls > score_threshold bbox = bbox_per_img[keep_mask] score = score_per_cls[keep_mask] idx = score.argsort()[::-1] bbox = bbox[idx] score = score[idx] keep_idx = [] for i, b in enumerate(bbox): supressed = False for gi in keep_idx: g = bbox[gi] if rbox_iou(b, g) > iou_threshlod: supressed = True break if supressed: continue keep_idx.append(i) keep_box = bbox[keep_idx] keep_score = score[keep_idx] keep_cls_ids = np.ones(len(keep_idx)) * cls_id bboxes.append( np.concatenate( [keep_cls_ids[:, None], keep_score[:, None], keep_box], axis=-1)) num_per_img += len(keep_idx) bbox_num.append(num_per_img) return np.concatenate(bboxes, axis=0), np.array(bbox_num) def get_test_images(infer_dir, infer_img): """ Get image path list in TEST mode """ assert infer_img is not None or infer_dir is not None, \ "--image_file or --image_dir should be set" assert infer_img is None or os.path.isfile(infer_img), \ "{} is not a file".format(infer_img) assert infer_dir is None or os.path.isdir(infer_dir), \ "{} is not a directory".format(infer_dir) # infer_img has a higher priority if infer_img and os.path.isfile(infer_img): return [infer_img] images = set() infer_dir = os.path.abspath(infer_dir) assert os.path.isdir(infer_dir), \ "infer_dir {} is not a directory".format(infer_dir) exts = ['jpg', 'jpeg', 'png', 'bmp'] exts += [ext.upper() for ext in exts] for ext in exts: images.update(glob.glob('{}/*.{}'.format(infer_dir, ext))) images = list(images) assert len(images) > 0, "no image found in {}".format(infer_dir) print("Found {} inference images in total.".format(len(images))) return images def predict_image(infer_config, predictor, img_list): # load preprocess transforms transforms = Compose(infer_config['Preprocess']) # predict image for img_path in img_list: inputs = transforms(img_path) inputs_name = [var.name for var in predictor.get_inputs()] inputs = {k: inputs[k][None, ] for k in inputs_name} outputs = predictor.run(output_names=None, input_feed=inputs) bboxes, bbox_num = multiclass_nms_rotated( np.array(outputs[0]), np.array(outputs[1])) print("ONNXRuntime predict: ") for bbox in bboxes: if bbox[0] > -1 and bbox[1] > infer_config['draw_threshold']: print(f"{int(bbox[0])} {bbox[1]} " f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}" f"{bbox[6]} {bbox[7]} {bbox[8]} {bbox[9]}") def parse_args(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--infer_cfg", type=str, help="infer_cfg.yml") parser.add_argument( '--onnx_file', type=str, default="model.onnx", help="onnx model file path") parser.add_argument("--image_dir", type=str) parser.add_argument("--image_file", type=str) return parser.parse_args() if __name__ == '__main__': FLAGS = parse_args() # load image list img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file) # load predictor predictor = InferenceSession(FLAGS.onnx_file) # load infer config with open(FLAGS.infer_cfg) as f: infer_config = yaml.safe_load(f) predict_image(infer_config, predictor, img_list)