# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Reference: https://github.com/CAPTAIN-WHU/DOTA_devkit from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import json import cv2 from tqdm import tqdm from multiprocessing import Pool def load_dota_info(image_dir, anno_dir, file_name, ext=None): base_name, extension = os.path.splitext(file_name) if ext and (extension != ext and extension not in ext): return None info = {'image_file': os.path.join(image_dir, file_name), 'annotation': []} anno_file = os.path.join(anno_dir, base_name + '.txt') if not os.path.exists(anno_file): return info with open(anno_file, 'r') as f: for line in f: items = line.strip().split() if (len(items) < 9): continue anno = { 'poly': list(map(float, items[:8])), 'name': items[8], 'difficult': '0' if len(items) == 9 else items[9], } info['annotation'].append(anno) return info def load_dota_infos(root_dir, num_process=8, ext=None): image_dir = os.path.join(root_dir, 'images') anno_dir = os.path.join(root_dir, 'labelTxt') data_infos = [] if num_process > 1: pool = Pool(num_process) results = [] for file_name in os.listdir(image_dir): results.append( pool.apply_async(load_dota_info, (image_dir, anno_dir, file_name, ext))) pool.close() pool.join() for result in results: info = result.get() if info: data_infos.append(info) else: for file_name in os.listdir(image_dir): info = load_dota_info(image_dir, anno_dir, file_name, ext) if info: data_infos.append(info) return data_infos def process_single_sample(info, image_id, class_names): image_file = info['image_file'] single_image = dict() single_image['file_name'] = os.path.split(image_file)[-1] single_image['id'] = image_id image = cv2.imread(image_file) height, width, _ = image.shape single_image['width'] = width single_image['height'] = height # process annotation field single_objs = [] objects = info['annotation'] for obj in objects: poly, name, difficult = obj['poly'], obj['name'], obj['difficult'] if difficult == '2': continue single_obj = dict() single_obj['category_id'] = class_names.index(name) + 1 single_obj['segmentation'] = [poly] single_obj['iscrowd'] = 0 xmin, ymin, xmax, ymax = min(poly[0::2]), min(poly[1::2]), max(poly[ 0::2]), max(poly[1::2]) width, height = xmax - xmin, ymax - ymin single_obj['bbox'] = [xmin, ymin, width, height] single_obj['area'] = height * width single_obj['image_id'] = image_id single_objs.append(single_obj) return (single_image, single_objs) def data_to_coco(infos, output_path, class_names, num_process): data_dict = dict() data_dict['categories'] = [] for i, name in enumerate(class_names): data_dict['categories'].append({ 'id': i + 1, 'name': name, 'supercategory': name }) pbar = tqdm(total=len(infos), desc='data to coco') images, annotations = [], [] if num_process > 1: pool = Pool(num_process) results = [] for i, info in enumerate(infos): image_id = i + 1 results.append( pool.apply_async( process_single_sample, (info, image_id, class_names), callback=lambda x: pbar.update())) pool.close() pool.join() for result in results: single_image, single_anno = result.get() images.append(single_image) annotations += single_anno else: for i, info in enumerate(infos): image_id = i + 1 single_image, single_anno = process_single_sample(info, image_id, class_names) images.append(single_image) annotations += single_anno pbar.update() pbar.close() for i, anno in enumerate(annotations): anno['id'] = i + 1 data_dict['images'] = images data_dict['annotations'] = annotations with open(output_path, 'w') as f: json.dump(data_dict, f)