architecture: S2ANet pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams weights: output/s2anet_r50_fpn_1x_dota/model_final.pdparams # Model Achitecture S2ANet: backbone: ResNet neck: FPN head: S2ANetHead ResNet: depth: 50 variant: d norm_type: bn return_idx: [1,2,3] num_stages: 4 FPN: in_channels: [256, 512, 1024] out_channel: 256 spatial_scales: [0.25, 0.125, 0.0625] has_extra_convs: True extra_stage: 2 relu_before_extra_convs: False S2ANetHead: anchor_strides: [8, 16, 32, 64, 128] anchor_scales: [4] anchor_ratios: [1.0] anchor_assign: RBoxAssigner stacked_convs: 2 feat_in: 256 feat_out: 256 align_conv_type: 'AlignConv' # AlignConv Conv align_conv_size: 3 use_sigmoid_cls: True reg_loss_weight: [1.0, 1.0, 1.0, 1.0, 1.1] cls_loss_weight: [1.1, 1.05] nms_pre: 2000 nms: name: MultiClassNMS keep_top_k: -1 score_threshold: 0.05 nms_threshold: 0.1 normalized: False RBoxAssigner: pos_iou_thr: 0.5 neg_iou_thr: 0.4 min_iou_thr: 0.0 ignore_iof_thr: -2