_BASE_: [ './_base_/sku110k.yml', '../../runtime.yml' ] log_iter: 10 snapshot_epoch: 20 weights: output/ppyoloe_plus_crn_s_80e_coco/model_final pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/ppyoloe_crn_x_obj365_pretrained.pdparams depth_mult: 1.33 width_mult: 1.25 # arch architecture: YOLOv3 norm_type: sync_bn use_ema: true ema_decay: 0.9998 custom_black_list: ['reduce_mean'] YOLOv3: backbone: CSPResNet neck: CustomCSPPAN yolo_head: PPYOLOEHead post_process: ~ CSPResNet: layers: [3, 6, 6, 3] channels: [64, 128, 256, 512, 1024] return_idx: [1, 2, 3] use_large_stem: True use_alpha: True CustomCSPPAN: out_channels: [768, 384, 192] stage_num: 1 block_num: 3 act: 'swish' spp: true use_alpha: True PPYOLOEHead: fpn_strides: [32, 16, 8] grid_cell_scale: 5.0 grid_cell_offset: 0.5 static_assigner_epoch: -1 use_varifocal_loss: True loss_weight: {class: 1.0, iou: 2.5, dfl: 0.5} static_assigner: name: ATSSAssigner topk: 9 assigner: name: TaskAlignedAssigner topk: 13 alpha: 1.0 beta: 6.0 nms: name: MultiClassNMS nms_top_k: 3000 keep_top_k: 1000 score_threshold: 0.01 nms_threshold: 0.7 # reader worker_num: 8 eval_height: &eval_height 960 eval_width: &eval_width 960 eval_size: &eval_size [*eval_height, *eval_width] TrainReader: sample_transforms: - Decode: {} - Resize: {target_size: [3000, 1800], keep_ratio: True, interp: 2} - RandomDistort: {} - RandomCrop: {} - RandomFlip: {} batch_transforms: - BatchRandomResize: {target_size: [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896, 928, 960, 992, 1024, 1056, 1088, 1120, 1152], random_size: True, random_interp: True, keep_ratio: False} - NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], norm_type: none} - Permute: {} - PadGT: {} batch_size: 4 shuffle: true drop_last: true use_shared_memory: true collate_batch: true EvalReader: sample_transforms: - Decode: {} - Resize: {target_size: *eval_size, keep_ratio: False, interp: 2} - NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], norm_type: none} - Permute: {} batch_size: 2 TestReader: inputs_def: image_shape: [3, *eval_height, *eval_width] sample_transforms: - Decode: {} - Resize: {target_size: *eval_size, keep_ratio: False, interp: 2} - NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], norm_type: none} - Permute: {} batch_size: 1 # optimizer epoch: 80 LearningRate: base_lr: 0.002 schedulers: - !CosineDecay max_epochs: 96 - !LinearWarmup start_factor: 0. epochs: 5 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0005 type: L2