use_gpu: true use_xpu: false log_iter: 20 save_dir: output snapshot_epoch: 1 print_flops: false # Exporting the model export: post_process: True # Whether post-processing is included in the network when export model. nms: True # Whether NMS is included in the network when export model. benchmark: False # It is used to testing model performance, if set `True`, post-process and NMS will not be exported. metric: COCO num_classes: 1 architecture: PicoDet pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams weights: output/picodet_s_320_lcnet_pedestrian/best_model find_unused_parameters: True use_ema: true epoch: 300 snapshot_epoch: 10 PicoDet: backbone: LCNet neck: LCPAN head: PicoHeadV2 LCNet: scale: 0.75 feature_maps: [3, 4, 5] LCPAN: out_channels: 96 use_depthwise: True num_features: 4 PicoHeadV2: conv_feat: name: PicoFeat feat_in: 96 feat_out: 96 num_convs: 2 num_fpn_stride: 4 norm_type: bn share_cls_reg: True use_se: True feat_in_chan: 96 fpn_stride: [8, 16, 32, 64] prior_prob: 0.01 reg_max: 7 cell_offset: 0.5 grid_cell_scale: 5.0 static_assigner_epoch: 100 use_align_head: True static_assigner: name: ATSSAssigner topk: 9 force_gt_matching: False assigner: name: TaskAlignedAssigner topk: 13 alpha: 1.0 beta: 6.0 loss_class: name: VarifocalLoss use_sigmoid: False iou_weighted: True loss_weight: 1.0 loss_dfl: name: DistributionFocalLoss loss_weight: 0.5 loss_bbox: name: GIoULoss loss_weight: 2.5 nms: name: MultiClassNMS nms_top_k: 1000 keep_top_k: 100 score_threshold: 0.025 nms_threshold: 0.6 LearningRate: base_lr: 0.32 schedulers: - !CosineDecay max_epochs: 300 - !LinearWarmup start_factor: 0.1 steps: 300 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.00004 type: L2 worker_num: 6 eval_height: &eval_height 320 eval_width: &eval_width 320 eval_size: &eval_size [*eval_height, *eval_width] TrainReader: sample_transforms: - Decode: {} - RandomCrop: {} - RandomFlip: {prob: 0.5} - RandomDistort: {} batch_transforms: - BatchRandomResize: {target_size: [256, 288, 320, 352, 384], random_size: True, random_interp: True, keep_ratio: False} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} - PadGT: {} batch_size: 64 shuffle: true drop_last: true EvalReader: sample_transforms: - Decode: {} - Resize: {interp: 2, target_size: *eval_size, keep_ratio: False} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: 32} batch_size: 8 shuffle: false TestReader: inputs_def: image_shape: [1, 3, *eval_height, *eval_width] sample_transforms: - Decode: {} - Resize: {interp: 2, target_size: *eval_size, keep_ratio: False} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_size: 1 TrainDataset: !COCODataSet image_dir: "" anno_path: aic_coco_train_cocoformat.json dataset_dir: dataset data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd'] EvalDataset: !COCODataSet image_dir: val2017 anno_path: annotations/instances_val2017.json dataset_dir: dataset/coco TestDataset: !ImageFolder anno_path: annotations/instances_val2017.json # also support txt (like VOC's label_list.txt) dataset_dir: dataset/coco # if set, anno_path will be 'dataset_dir/anno_path'