_BASE_: [ '../fairmot/fairmot_dla34_30e_1088x608.yml', '../../datasets/mcmot.yml' ] metric: MCMOT num_classes: 4 # for MCMOT training TrainDataset: !MCMOTDataSet dataset_dir: dataset/mot image_lists: ['visdrone_mcmot_vehicle.train'] data_fields: ['image', 'gt_bbox', 'gt_class', 'gt_ide'] label_list: label_list.txt EvalMOTDataset: !MOTImageFolder dataset_dir: dataset/mot data_root: visdrone_mcmot_vehicle/images/val keep_ori_im: False # set True if save visualization images or video, or used in DeepSORT anno_path: dataset/mot/visdrone_mcmot_vehicle/label_list.txt # for MCMOT video inference TestMOTDataset: !MOTImageFolder dataset_dir: dataset/mot keep_ori_im: True # set True if save visualization images or video anno_path: dataset/mot/visdrone_mcmot_vehicle/label_list.txt pretrain_weights: https://paddledet.bj.bcebos.com/models/centernet_dla34_140e_coco.pdparams FairMOT: detector: CenterNet reid: FairMOTEmbeddingHead loss: FairMOTLoss tracker: JDETracker # multi-class tracker CenterNetHead: regress_ltrb: False CenterNetPostProcess: regress_ltrb: False max_per_img: 200 JDETracker: min_box_area: 0 vertical_ratio: 0 # no need to filter bboxes according to w/h use_byte: True match_thres: 0.8 conf_thres: 0.4 low_conf_thres: 0.2 weights: output/mcfairmot_dla34_30e_1088x608_visdrone_vehicle_bytetracker/model_final epoch: 30 LearningRate: base_lr: 0.0005 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [10, 20] use_warmup: False OptimizerBuilder: optimizer: type: Adam regularizer: NULL