# This config is an assembled config for ByteTrack MOT, used as eval/infer mode for MOT. _BASE_: [ '../../../yolov3/yolov3_darknet53_270e_coco.yml', '../_base_/mot17.yml', ] weights: output/yolov3_darknet53_40e_608x608_mot17half/model_final log_iter: 20 snapshot_epoch: 2 # schedule configuration for fine-tuning epoch: 40 LearningRate: base_lr: 0.0001 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: - 32 - 36 - !LinearWarmup start_factor: 0.3333333333333333 steps: 100 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0005 type: L2 TrainReader: batch_size: 8 mixup_epoch: 35 # detector configuration architecture: YOLOv3 pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/yolov3_darknet53_270e_coco.pdparams norm_type: sync_bn YOLOv3: backbone: DarkNet neck: YOLOv3FPN yolo_head: YOLOv3Head post_process: BBoxPostProcess DarkNet: depth: 53 return_idx: [2, 3, 4] # use default config # YOLOv3FPN: YOLOv3Head: anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]] anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]] loss: YOLOv3Loss YOLOv3Loss: ignore_thresh: 0.7 downsample: [32, 16, 8] label_smooth: false BBoxPostProcess: decode: name: YOLOBox conf_thresh: 0.005 downsample_ratio: 32 clip_bbox: true nms: name: MultiClassNMS keep_top_k: 100 score_threshold: 0.01 nms_threshold: 0.45 nms_top_k: 1000