# This config is an assembled config for ByteTrack MOT, used as eval/infer mode for MOT. _BASE_: [ 'detector/yolox_x_24e_800x1440_ht21.yml', '_base_/ht21.yml', '_base_/yolox_mot_reader_800x1440.yml' ] weights: output/bytetrack_yolox_ht21/model_final log_iter: 20 snapshot_epoch: 2 metric: MOT # eval/infer mode num_classes: 1 architecture: ByteTrack pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/yolox_x_300e_coco.pdparams ByteTrack: detector: YOLOX reid: None tracker: JDETracker det_weights: https://bj.bcebos.com/v1/paddledet/models/mot/yolox_x_24e_800x1440_ht21.pdparams reid_weights: None depth_mult: 1.33 width_mult: 1.25 YOLOX: backbone: CSPDarkNet neck: YOLOCSPPAN head: YOLOXHead input_size: [800, 1440] size_stride: 32 size_range: [18, 22] # multi-scale range [576*1024 ~ 800*1440], w/h ratio=1.8 CSPDarkNet: arch: "X" return_idx: [2, 3, 4] depthwise: False YOLOCSPPAN: depthwise: False # Tracking requires higher quality boxes, so NMS score_threshold will be higher YOLOXHead: l1_epoch: 20 depthwise: False loss_weight: {cls: 1.0, obj: 1.0, iou: 5.0, l1: 1.0} assigner: name: SimOTAAssigner candidate_topk: 10 use_vfl: False nms: name: MultiClassNMS nms_top_k: 30000 keep_top_k: 1000 score_threshold: 0.01 nms_threshold: 0.7 # For speed while keep high mAP, you can modify 'nms_top_k' to 1000 and 'keep_top_k' to 100, the mAP will drop about 0.1%. # For high speed demo, you can modify 'score_threshold' to 0.25 and 'nms_threshold' to 0.45, but the mAP will drop a lot. # BYTETracker JDETracker: use_byte: True match_thres: 0.9 conf_thres: 0.7 low_conf_thres: 0.1 min_box_area: 0 vertical_ratio: 0 # 1.6 for pedestrian