_BASE_: [ '../datasets/coco_detection.yml', '../runtime.yml', '_base_/optimizer_1x.yml', '_base_/gfl_reader.yml', ] weights: output/gfl_r18vd_1x_coco/model_final find_unused_parameters: True architecture: GFL pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet18_vd_pretrained.pdparams GFL: backbone: ResNet neck: FPN head: LDGFLHead ResNet: depth: 18 variant: d norm_type: bn freeze_at: 0 return_idx: [1,2,3] num_stages: 4 FPN: out_channel: 256 spatial_scales: [0.125, 0.0625, 0.03125] extra_stage: 2 has_extra_convs: true use_c5: false LDGFLHead: # new head conv_feat: name: FCOSFeat feat_in: 256 feat_out: 256 num_convs: 4 norm_type: "gn" use_dcn: false fpn_stride: [8, 16, 32, 64, 128] prior_prob: 0.01 reg_max: 16 loss_class: name: QualityFocalLoss use_sigmoid: True beta: 2.0 loss_weight: 1.0 loss_dfl: name: DistributionFocalLoss loss_weight: 0.25 loss_bbox: name: GIoULoss loss_weight: 2.0 loss_ld: name: KnowledgeDistillationKLDivLoss loss_weight: 0.25 T: 10 loss_ld_vlr: name: KnowledgeDistillationKLDivLoss loss_weight: 0.25 T: 10 loss_kd: name: KnowledgeDistillationKLDivLoss loss_weight: 10 T: 2 nms: name: MultiClassNMS nms_top_k: 1000 keep_top_k: 100 score_threshold: 0.025 nms_threshold: 0.6