_BASE_: [ '../datasets/coco_detection.yml', '../runtime.yml', '_base_/gfl_r50_fpn.yml', '_base_/optimizer_1x.yml', '_base_/gfl_reader.yml', ] pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_vd_pretrained.pdparams weights: output/gfl_r101vd_fpn_mstrain_2x_coco/model_final find_unused_parameters: True use_ema: true ema_decay: 0.9998 ResNet: depth: 101 variant: d norm_type: bn freeze_at: 0 return_idx: [1,2,3] num_stages: 4 epoch: 24 LearningRate: base_lr: 0.01 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [16, 22] - !LinearWarmup start_factor: 0.001 steps: 500 TrainReader: sample_transforms: - Decode: {} - RandomResize: {target_size: [[480, 1333], [512, 1333], [544, 1333], [576, 1333], [608, 1333], [640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], interp: 2, keep_ratio: True} - RandomFlip: {prob: 0.5} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: 32} - Gt2GFLTarget: downsample_ratios: [8, 16, 32, 64, 128] grid_cell_scale: 8