|
@@ -1,95 +0,0 @@
|
|
|
-import da_python as dap
|
|
|
-import cv2
|
|
|
-import argparse
|
|
|
-import os
|
|
|
-import glob
|
|
|
-from PIL import Image
|
|
|
-import copy
|
|
|
-import json
|
|
|
-from tqdm import tqdm
|
|
|
-
|
|
|
-def traverse_folder(path, image_paths):
|
|
|
- # 获取当前文件夹下的所有文件和子文件夹
|
|
|
- for file in os.listdir(path):
|
|
|
- # 获取文件路径
|
|
|
- file_path = os.path.join(path, file)
|
|
|
-
|
|
|
- # 判断文件类型,如果是图片则加入列表
|
|
|
- if os.path.isfile(file_path) and os.path.splitext(file_path)[1].lower() in allowed_extensions:
|
|
|
- image_paths.append(file_path)
|
|
|
- # 如果是文件夹,则递归调用本函数
|
|
|
- elif os.path.isdir(file_path):
|
|
|
- traverse_folder(file_path, image_paths)
|
|
|
-
|
|
|
-def labeling(model, key, image_paths, set_score, view_result_dir):
|
|
|
- da, create_result = dap.create(key, model)
|
|
|
- if create_result != dap.E_DA_SUCCESS:
|
|
|
- print('create document ai failed:{}'.format(create_result))
|
|
|
- exit()
|
|
|
- detect_engine, a = da.detection()
|
|
|
- # print(a)
|
|
|
-
|
|
|
- # 存放json信息
|
|
|
- labelme_json = {}
|
|
|
- shape_dic = {}
|
|
|
-
|
|
|
- for image_path in tqdm(image_paths):
|
|
|
- image = cv2.imread(image_path)
|
|
|
- layout_analysis_result, layout_analysis_result_code = detect_engine.layout_analysis(image)
|
|
|
- if layout_analysis_result_code == dap.E_DA_SUCCESS:
|
|
|
- # 判断是否检测到目标
|
|
|
- if len(layout_analysis_result.boxes):
|
|
|
- # print(dir(layout_analysis_result))
|
|
|
- # print(layout_analysis_result.boxes)
|
|
|
- # print(layout_analysis_result.labels)
|
|
|
- # print(layout_analysis_result.scores)
|
|
|
- # labels_list = layout_analysis_result.labels
|
|
|
- # box_list = layout_analysis_result.boxes
|
|
|
- # score_list = layout_analysis_result.scores
|
|
|
- shapes_list = []
|
|
|
- labelme_json['version'] = '5.0.1'
|
|
|
- labelme_json['flags'] = {}
|
|
|
- # 根据分数进行过滤
|
|
|
- for index, score in enumerate(layout_analysis_result.scores):
|
|
|
- # print(index, score)
|
|
|
- if score < set_score:
|
|
|
- continue
|
|
|
- # print('检测到')
|
|
|
- shape_dic['label'] = layout_analysis_result.labels[index]
|
|
|
- box = layout_analysis_result.boxes[index]
|
|
|
- x1, y1, x2, y2 = box[0], box[1], box[2], box[3]
|
|
|
- shape_dic['points'] = [[x1, y1], [x2, y2]]
|
|
|
- shape_dic['group_id'] = None
|
|
|
- shape_dic['shape_type'] = 'rectangle' # 根据需求进行填写
|
|
|
- shape_dic['flags'] = {}
|
|
|
- shapes_list.append(copy.deepcopy(shape_dic))
|
|
|
- labelme_json['shapes'] = shapes_list
|
|
|
- labelme_json['imagePath'] = os.path.basename(image_path)
|
|
|
- labelme_json['imageData'] = None
|
|
|
- labelme_json['imageHeight'], labelme_json['imageWidth'] = image.shape[0], image.shape[1]
|
|
|
- json_path = image_path.replace(os.path.splitext(image_path)[1], '.json')
|
|
|
- json.dump(labelme_json, open(json_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=2)
|
|
|
- visualize_im = dap.visualize.detection(image, layout_analysis_result)
|
|
|
- cv2.imwrite(os.path.join(view_result_dir, os.path.basename(image_path)), visualize_im)
|
|
|
-
|
|
|
- else:
|
|
|
- print('magic color infer failed:{}'.format(layout_analysis_result_code))
|
|
|
-
|
|
|
-
|
|
|
-if __name__ == '__main__':
|
|
|
- parser = argparse.ArgumentParser()
|
|
|
- parser.add_argument('--model', type=str, default='', help='')
|
|
|
- parser.add_argument('--model_licence', type=str, default='', help='')
|
|
|
- parser.add_argument('--score', type=int, default=0.8, help='')
|
|
|
- parser.add_argument('--image_dir', type=str, default='', help='')
|
|
|
- parser.add_argument('--view_result_dir', type=str, default='', help='')
|
|
|
- args = parser.parse_args()
|
|
|
-
|
|
|
- # 定义允许的图片格式
|
|
|
- allowed_extensions = ['.jpg', '.jpeg', '.png', '.gif']
|
|
|
- # 初始化图片路径列表
|
|
|
- image_paths = []
|
|
|
- # 调用遍历函数
|
|
|
- traverse_folder(args.image_dir, image_paths)
|
|
|
-
|
|
|
- labeling(args.model, args.model_key, image_paths, args.score, args.view_result_dir)
|